POWERSHELL

FOR BEGINNERS

Alexandru Marin

As | write these words, I'm overcome with joy and excitement to welcome you on an
unforgettable journey into the enthralling world of PowerShell. This book isn't just about
learning a scripting language; it's a heartfelt invitation to delve into a universe of infinite
possibilities, where lines of code transform into magical spells.

PowerShell, you see, is more than a tool; it's an art form that allows us to shape our digital
landscapes with grace and finesse. It is a language that crosses boundaries, bridging the
gap between technology and creativity. Most importantly, it's a community—a family of
passionate people united by their love of scripting.

As we embark on this journey together, we will discover the secrets of automation, bringing
life to mundane tasks and freeing up our time for what truly matters. We'll travel through
Azure's vast landscapes, harnessing the power of the cloud with every keystroke. We'll delve
into the heart of Windows management, creating logic symphonies that flawlessly
orchestrate our systems.

We will discover the secrets of automation as we embark on this journey together, bringing
life to mundane tasks and freeing up our time for what truly matters.

You'll learn about PowerShell's hidden gems—the tips, tricks, and shortcuts that seasoned
wizards use to improve their coding experience—on these pages. We'll explore the wonders
of modules together, expanding the boundaries of our scripts and accessing a wealth of
functionalities.

But this journey is about us—about you—beyond the lines of code and the technical marvels.
It's about the spark of curiosity that keeps us exploring, and the joy of sharing knowledge
and experiences with one another.

| am deeply honored to be your tour guide on this journey. And as we embark on this epic
journey, | invite you to open your heart and allow PowerShell to work its magic within you.
Accept the art, accept the community, and allow your imagination to soar to new heights.

Remember that this is more than just a book; it is a testament to the power of scripting as
well as the human spirit of curiosity and innovation. So, let us embark on this journey
together, and may each page inspire you to embrace PowerShell's artistry and the wonders it
contains.

www.alexandrumarin.com 2

http://www.alexandrumarin.com

Contents

Introduction 10 POWEIShElL............ooiiriiiieiicccreerrttteeerereeeeeeseeeeeeeenneeseeesssennnnsnnes 8
What iS POWEISNEII?......c..ooeeeeeee ettt ettt e e e ene e 8
Why Learn POWEISNEll?........c..o e 8
INSTAlliNG POWEISNEIL.........oooeeieeee ettt 9

WINAOWS......eiiee ettt ettt et e ettt e e sbe e aaeesbeessaeeseesaseessaeenseesnseenseas 9
=T O OSSR 10
LU X e e e e e et e e e e et e e e e e e taa e e e e eabaaeeeeettaeeeeeeaaaeeans 12
Getting Started With POWErShell............c..ooviiiiieee e 19

POWEIShell IDE TOOIS........cccoiiiiiimiiiiiiiieeniieeeeeteeeneeeeeeeeteennssssssssssessnnssssssssssesnnsssssssssssnes 20
Introduction t0 POWEIShEII IDES..........coooiiiiiieieeeeeeee et 20
Feature Comparison of Popular PowerShell IDEs............ccocooiiiiiiiiiiiieeeeeee, 21

PowerShell ISE (Integrated Scripting ENVIironment).............c.ccccoveveieiiiicieeeecieeeeeinan 21
Visual Studio Code with PowerShell EXtENSION..........ccocvieiiieiiieiiecieeeeeeee e 22
Other PowerShell IDE OPtiONS. ittt ettt a e e e e e e e aaaaaaaaaaaaaaaaaaeeas 26
POWEISREI STUAIO. ..ottt 26
YU o] 1 =T = | SRS 27
POWEIGUILL.... et e e e e e e e e e e eeraaaaans 32
Choosing the Right IDE fOr YOUr NEEAS.........ccoiiiiiiiiiiiiiieieieieee e 34

AT =Y 5 4 1= | = 2 L] o 35
PowerShell Command SYNTAX........cccoiiiiiiieiieieeieeie ettt saeesaeeseens 35
Working With CAIETS...........ooviieieeeeee e 41
Variables and Data TYPES......couiviiiiieiecieeeee ettt ettt et be e e sae s 45

D E= 1= T Y 01 TSRS 45
VariAbIE SCOPES.... ..ottt e et et e ete et eeteeeae e 47
Operators and EXPreSSIONS.cciiiiieeii ettt ettt ettt e e beeeaseeaee e 55
ArithmEtic OPEIAtOrS.coviiieeeeeeeeee et 55
ASSIGNMENT OPEIATOrS.viiiiiiieciie ettt ettt e e e b e e etaeeeaeseeeaseeenenas 60
ComMPAariSON OPEIAtOrS........ciiiiiiiieie ettt ettt e st e e e eab e e e e e eebaeeeeeetaaeeeeanes 61
LOGICAl OPEIAtOrS.ottt ettt et ettt e e aeeeaaeesaeeeaneas 65
STHNG OPEIATOIS....cc et e ettt e e e e et e e e e etbbe e e e sebbaeeeeeaeraeeeas 68
Control Flow Statements.............ooooiii s 75
WOrking With FUNCHIONS..........eiiiiiiiee e 89
Function Definition @nd SYNTaX.........ccoccieviieiiiieiieieeieceeeee e 89
Function Invocation and Return Values..............cooeeieiiiiiiiiieeceeeeee e 90
Function Scope and Variables................uuuuiiiiiiiiiiiiiiiiiiiiieeeee e 92
Advanced FUNCLION CONCEPTS......cccuieiuiieiieiieeieeee ettt 92

Managing Files and Folders...........ccouuuiiiiiiiiecccecereeeeeeeeeeeteeeeeneee e e e eeeeesnaeeeeeesesnnnnnnns 96

Navigating the File SYStem.........co e 96
Understanding the File System Hierarchy............cccooiiiiiioiiioiiecee e 96

www.alexandrumarin.com 3

http://www.alexandrumarin.com

Listing Files and FOIAErS...........ooiiiiiiieeee e 98

Displaying Path INformation.............c.cocoviiiiiiic e 100
Files and Folders Operations............ccooooiiiiiiii i 105
Creating Files and FOIAErS..........ooouiiiiiiiiiceee et 105
Renaming Files and FOIAErS.........ccooouiiiiceceeeeeee e 105
Deleting Files and FOIAErS..........ccoooiiiiieeieee e 106
Copying Files and FOIAEIS..........ooieieieeeeeece et 106
Moving Files and FOIAErS...........couvioiiiiiieeee e 107
Modifying File Attributes and PermisSions...........ooocuuiiiiiiiiiiiiii e 108
Modifying File AtIDUTES.oc.iii e 108
Modifying File PErMISSIONS.......c..oocuiiiiieiieeie ettt 109
Searching for Files and FOIAErs.............iiiiiiiiiee e e e e e e e eees 111
Searching by File NamMIE.........ccoviiiieieee et 111
Searching by File AtrDULES.ccioiieeeee e 112
Searching by File CONTENT.........ccoooiiiiee et 114
Manipulating the Windows RegiStry.........ccceeeeeeiiiiiiiiiiiiiiiiiiiiienieenieenieeieeeeeeeeeeeeeeeeeeeessennes 116
Introduction to the WindowWSs REGISIIY.........oooiiiiiieiece e 116
What is the WINdOWS REGISTIIY?.......ociiiiieiieieciee et 116
Why is the Registry important?............oooiiiiiiiiceceee e 116
Understanding the Registry Hierarchy and Structure............cccocooevveiienieiicieeee. 117
Reading REQISIIY ValUES...........ooouiiiiieieeeeee et et 118
Retrieving Specific Registry Keys and Values..........c.ccccoovevieiiiieieeiecieceeeee e 119
Accessing Registry Values in Different Hives............c.coooeiiiiiiiiiicicceceecee 120
Modifying REGISIIY VAlUES.......c.oeiiiiiiieeee ettt 121
Creating New Registry Keys and Values.............cccouveoiieiiiiiiiciececeeeeeee e 121
Updating and Deleting Existing Registry Values..............ccccccoiiiiiiiiiiiieeeeen 122
Deleting @ Registry ValUe. ..o e 122
Enumerating Registry Keys and Values.............coouieiiiiiiiiiiicececee e 123
Getting a List of Subkeys and Values within a Registry Key..........cccccooeiiiininininee. 123
Recursive Enumeration of Registry KeYS........c.ooovieiieoiiiiiiecieeeceeeeeee e 124
Filtering and Sorting Registry Data...........cocooiiiiiiiieieeeee e 126
Importing and Exporting Registry Data..........cc.cooeieiiiiiiieececeeee e 128
Exporting Registry Keys and Valuesto a.reg File...........cccooieiiiiiiieiiniece 128
Importing Registry Data from a.reg File...........ccoooviiiiiiiiiieeeeeeee e 130
Registry Security and PermiSSIONS..........cooiiiiiiiiieieeiesee e e 134
Understanding Registry Security PrinCiples..........cccooeiiiiiieiiieieceeeeeee e 134
Modifying Registry Permissions with PowerShell...............cccoooiiiiiiiinis 135
Taking Ownership of Registry KeYS.........coviiuiiiiiiiiieeeeeeeeeeeee e 137
Advanced Registry TEChNIQUES............coiiiiiiiiiet e 139
Working with binary and multi-string values...............ccoooiiiiiioicceeececeeeee 139
Using transactions for registry Operations.............cccooceviiieieieieieeee e 142
Working with WMI in PowerShell.............ooo it eceeeenesse e e e e eesnaneeeeees 146

www.alexandrumarin.com 4

http://www.alexandrumarin.com

INTFOAUCTION 1O WM. e e e 146

WRAT IS WIMI?.....eeee ettt sttt ettt esse e b e eseesseenseeneenns 146
Why Use WMI in POWEIShell?..........ooiiiiee e 146
WMI Namespace and Classes OVEIVIEW..........c.cccueeiiieiuieeieeeiieeeeee et 146
Getting Started with WMl in PowerShell.............ooiiiieeeee 149
Enabling and Verifying WMI ACCESS.........couiiuiiieeceeeeeeeee e 149
Exploring WMI Classes and Properties..........cccoeveeiieiiecieecee et 149
Querying WMI Data with PowerShell.............cccooioiioiiieeeeeeeeeee e 152
Retrieving System INfOrmation............ccooiiiiiiiii e 154
Getting Computer Information with Win32_ComputerSystem Class...........c..cc......... 154
Gathering Operating System Details with Win32_OperatingSystem Class................ 155
Monitoring Hardware and Device Information..............cccoooiiiiiiiiccicceeeeeeee e 157
Managing ProcesSes and SEIVICES.coueiuiiiiiieiieie ettt 159
Working with Win32_Process Class.........ccooouieiiiiiieiiieeeee e 159
Controlling Services with Win32_Service Class........cccccevieiieiiiiiieeeeceeee 162
Monitoring System PerformancCe.............coooviiiiiiiiiee e 166
Collecting Performance Data with Win32_PerfFormattedData Classes.................... 166
Tracking Network Performance MetriCs..........cccuoovuieiiieiieeceecee e 167
Managing Windows Registry With WMLL.........cccooiiiiiiiee e 169
Accessing Registry Entries With WMLL..........coooiiiiiiieceeee e 169
Modifying Registry Entries With WMI............ccoiiiiiiiiiieeeeee e 170
Working with Network Configuration.............ccoouoeoiiiiiiecee e 172
Gathering Network Interface Information with Win32_NetworkAdapter Class......... 172
Configuring Network Settings uSINg WMI...........ccoooiiiiiiiiiececeeeeeeeeeee e 173
Event Monitoring and Handling............cc.oooiiiiiiiiiieceeeeee e 175
Monitoring System Events With WMLL...........ccooiiiiiiiiiceeeeeee e 175
Responding to Events with PowerShell...............ooooooiiiiiiiiieee e, 176
GUI Development with PowerShell................ e et ce e eeeaneeee e s 179
Introduction to GUI DeVelOPMENT.........ooouiiiiiieeeeeee e 179
WRAT IS @ GUIZ....oieieeeeeee ettt ettt e et beesaeesaesaeenseesnensaens 179
Benefits of GUIin POWEISHEl.........c.oooiiiiiiieeeee e 179
GUI Development Tools and Approaches...........ccccoooieeiiioiiiiicceceeeeeee e 179
POWErShell GUI BASICS........ooieiieiiee ettt e 188
Overview of Windows FOrms and WPF.............ccoooieiiiieiieeeeeeeeeeee e 188
Choosing the Right GUI FrameWOrK...........cc.oooiiiiiiiiieieecieeee e 188
Understanding GUI Elements and Controls.............cccoooveiiiiiicoiiicieeeeeeeeeee e, 189
Building Windows Forms AppliCationsS............oovieiiiiiiiiciccece e 193
Designing Windows Forms with PowerShell ISE...............c..oooieiiiiiiiieeeeeee, 193
Creating Forms and Dialog BOXES...........coouiieiiiiiiieieecee et 195
Adding Controls and Handling EVENtS...........c..oouiiiiioieeceeeee e 197
Styling and Customizing Windows FOrmMS............ccoeviieiiiiiiceececeeeee e 199
Working with Layouts and CoONtainers...........ccooveviieieiienieeeeceeeee e 201

www.alexandrumarin.com 5

http://www.alexandrumarin.com

Developing WPF APPlICAtIONS.cccuiiiiieiiecieeieeee ettt 203

Introduction to WPF (Windows Presentation Foundation).............ccccccevvvveveeivennen. 203
Creating XAML-Based WPF User Interfaces..........cccooeieieieninineiececeeeee 203
Binding Data to WPF CONrOIS.........cciiiiiiiiiececeeeeeee et 205
Styling and Theming WPF Applications..........cccoooiiiiiiiiiieeeeeeee e 207
Handling Events and Command Binding in WPF............ccccooiiiiiiiiiceeee 209
Enhancing GUI Functionality with PowerShell...............cooooiiiii e 211
Integrating PowerShell Scripts and Commands.............cccoooiiiiiiiiieiiccieceece e 211
Error Handling and User Feedback..............cccoiiiiiiiiii e, 214
Working with PowerShell Modules............ccoouuuiiiiiiiiccceeceereeceeeeecceenneee e e e e e eennnennens 216
INtrodUCtion O MOAUIES.........oiiiiieeece e e 216
What @re MOAUIES?........oeieeieieeeee ettt ettt e e 216
Installing and Importing Modules..............oooiiiiiiiiie e 216
Exploring Available ModUIES...........cc.oooiiiiieeeeee e 217
Using Modules to Extend PowerShell Functionality............ccccoooiiiiiiiniiineeee, 219
EXPOrtiNg FUNCHIONS......oiiiiiie ettt e e e e e st e e e e eares 222
PowerShell with Active Directory and Group Policies...........ccccccevveeeeemmenmunnnnnneccricnicnnnnne. 224
Managing USErs and GIOUPS.......cc.coiuiiiiieoiiieie ettt ettt et e v e aeeeaeeeaeeeaeeeaeas 225
Automating Active DireCtory TasKS.........ooceriiiieiiieieeeeee e 229
Querying Active Directory INformation.............ccooveiieiiiiesieeeeeeee e 230
Managing Group Policy with PowerShell..............ccoooiiiirii e, 233
PowerShell and AZUre............oeeeeeeeeeeeeirrrereereeeeeceeeeeeeeseeeseeeseessesseseeeseeessesssssssssnnsnnes 236
Introduction to PowerShell and AZUre...........ccooiiiiiieeeeee e 236
Advantages of Using PowerShell with Azure.............cc.ooooieiiiiiiiiiieeeeeeecee, 236
Azure POWErShell MOAUIE..........ooiieee e et 240
Understanding the Azure PowerShell Module................ooooooiiiiiiiiiiieeeeee e 240
Installing the Azure PowerShell Module.............c.cooovioiiiiiiiiiiceceeeee e 240
Updating the Azure PowerShell Module..............ooouioiiiiiiiceeeeeeeeeeee e 241
Exploring Azure Cmdlets and FUNCLIONS............cooiieiiiiiicceceee e 242
AUthentiCating t0 AZUIE.........ooiiieeeee ettt et 245
Connecting to Azure with Azure AD ACCOUNT..........ccoeiiiiiiiiecie e 245
Connecting to Azure with Service Principal............ccocoooiiiiiiiiiiecieeeeeeeeeee e 246
Using Managed Service Identity (MSI) for Authentication............cccccoceeveviriricreenee. 248
Managing Azure Resources with PowerShell.............c..oooooiiiiiiiieeeeeeeee 249
Creating and Managing Azure RESOUICE GrOUPS........c.ccecvieeuieereerieeereesiieeree e 249
Working with Azure Virtual Machings..............ccooooiioiiiciceeeeeeeeee e 254
Configuring Azure Storage ACCOUNTS.........c..oouiiiiiiieiieeeeeeeeeee et 260
AZUFE ClOUA SREIL.....oeieieeeeee ettt et beesae e e sse e 265
Configuring Azure Cloud Shell............ccoooiiiiiiiiececeeee e 265
Using Azure Cloud Shell............oo o 267
Exporting Data from Azure using PowerShell.............cccoooiiiiiiiiiieeeee e 269
Connecting to Azure and INTUNE.............ooviiiiiie e 269

www.alexandrumarin.com 6

http://www.alexandrumarin.com

Exporting Azure ReSource Data.........ooceoouiiiiiiiiiiiiciccee e 270

Automating Tasks with PowerShell................ e i e e eeeeeaaeeeeees 271
Task AUTOMAtion CONCEPTS......ccuiiiiieiieeieece et ereesaeeenee e 271
Scheduling POWErShell SCHPES........oooviiieeeeee e 273

TASK SCREAUIET ...t ae e es 273
PAV.A 8| (=AU | (o] 5 g = 1 {] o RS 274
(07 o] TN [o] o1 SRRSO SNSRI 276

PowerShell Tips and THCKS.......u..iiiiiiiiieceeeeierteceeeecteeeeeereeeeeeeennnneeeeeeeeesnnsesssseeseennns 277
Optimizing PowerShell Performance..............coioiiiiiiiiiiieeeeeee e 277
Using Regular Expressions in POwerShell............cc.ooovioiiiiiiiiiieceeeee e 278
PowerShell Remoting and SeSSIONS.........ccoiiiiiiiiiieeeeee e 280
PowerShell SPIatting.......c..oouiiiiiei ettt 282

CONCIUSION......ceeeeiiiiiiiiiiiiceeieteteeeeeeeeeteeenneeeeeeeaeesenssssasssessnnssssssssssesnnssssssssssssnnnsssssssanns 284

www.alexandrumarin.com 7

http://www.alexandrumarin.com

Introduction to PowerShell

Hello and welcome to the world of PowerShell! In this chapter, we'll look at the fundamentals
of PowerShell and why learning this powerful scripting language can help you with your daily
tasks.

What is PowerShell?

Have you ever wished for a tool that allows you to automate repetitive tasks, efficiently
manage systems, and work with various technologies? PowerShell is the solution! In this
section, we'll unpack PowerShell and explain how it differs from traditional command-line
interfaces.

Microsoft PowerShell is a cross-platform scripting language. It combines the power of
scripting languages like Perl and Python with command-line interfaces like the Windows
Command Prompt. PowerShell allows you to automate administrative tasks, manage system
configurations, and interact with a variety of technologies such as Microsoft products, cloud
platforms, and third-party applications.

PowerShell, unlike traditional command-line interfaces, emphasizes the concept of objects
rather than plain text output. This object-oriented approach allows you to easily manipulate
and transform data, making complex tasks easier to manage.

Why Learn PowerShell?

If you're wondering why you should put in the time and effort to learn PowerShell, this
section will give you some compelling reasons. Discover how PowerShell can boost your
productivity, simplify complex tasks, and provide access to a plethora of opportunities in the
IT industry.

The automation capabilities of PowerShell allow you to automate repetitive tasks and reduce
manual effort. You can save time and eliminate human errors by writing scripts and
automating workflows. Its capabilities are not limited to Windows administration. It can be
used to manage cloud platforms such as Azure and AWS, as well as interact with databases
and perform network administration tasks. PowerShell's versatility makes it a valuable skill
in a variety of IT domains.

PowerShell seamlessly integrates with existing Microsoft technologies such as Active
Directory, Exchange Server, SharePoint, and SQL Server. It offers a consistent management

www.alexandrumarin.com 8

http://www.alexandrumarin.com

experience across multiple platforms, allowing you to work effectively in a hybrid IT
environment.

PowerShell has a thriving and helpful community. There are numerous online forums, blogs,
and documentation available to assist you in learning and problem solving. PowerShell's
community-driven nature ensures that you'll always find answers and guidance on your
learning journey.

Installing PowerShell

Now that you're excited to get started with PowerShell, let's walk you through the installation
process on different operating systems. Whether you're using Windows, macOS, or Linux,
we'll guide you step-by-step to ensure you have PowerShell up and running smoothly.

Windows

For Windows 10 & 11 : PowerShell comes pre-installed with Windows 10 & 11, so you're all
set! Simply search for "PowerShell" in the Start menu to launch it.

22 Windows PowerShell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
PS C:\Users\User>

Name

PSVersion 5.1.22621.1778
PSEdition Desktop
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}
BuildVersion 18.6.22621.1778
CLRVersion 4.8.30319.42000
WSManStackVersion 3.8
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.8.1

PS C:\Users\User> |

www.alexandrumarin.com 9

http://www.alexandrumarin.com

MacOS

To install PowerShell 7.0 or higher on macOS 10.13 and higher, you have a few options. All
the necessary packages can be found on the GitHub releases page. Simply open a terminal
and run the "pwsh" command once you've downloaded the package. Before proceeding,
please review the list of supported versions provided below.

Note: Upgrading to PowerShell 7.3 will remove any previous versions of PowerShell.

If you need to run an older version of PowerShell alongside version 7.3, use the binary
archive method to install the desired version.

To install the latest stable release using Homebrew, follow these steps:

If you don't already have Homebrew installed, you'll need to do so first. You can accomplish
this by entering the following command into your terminal:

/bin/bash -¢ "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

After installing Homebrew, you can install PowerShell by running the following command:

brew install --cask powershell

After the installation is complete, you can test PowerShell's functionality by running:

pwsh

You can use the following commands to update PowerShell when new versions are released:

brew update
brew upgrade powershell --cask

www.alexandrumarin.com 10

https://github.com/PowerShell/PowerShell
http://www.alexandrumarin.com

Please note that if you're running these commands from within a PowerShell host, you will
need to exit and restart the PowerShell shell to complete the upgrade and refresh the
values shown in SPSVersionTable.

If you prefer to install the most recent preview release, you can use Homebrew to do so:

Install the Cask-Versions package, which enables you to install alternative cask package
versions, by running:

brew tap homebrew/cask-versions

Install the PowerShell preview version:

brew install --cask powershell-preview

Verify the installation by running:

pwsh-preview

To update the preview version, use the following commands:

brew update
brew upgrade powershell-preview —-cask

You can also install PowerShell using the Homebrew tap method, whether you choose the
stable or preview version:

brew install powershell/tap/powershell

To verify the installation, run:

www.alexandrumarin.com 11

http://www.alexandrumarin.com

pwsh

When new versions of PowerShell are released, simply run the following command to
update:

brew upgrade powershell

If you installed PowerShell using a specific method (cask or tap), you should use the same
method to update to a newer version. If you use a different method, the older version may
be used when you open a new pwsh session.

You can also install PowerShell on MacOS via Direct download, and this option is available
starting with version 7.2. Just visit the releases page of PowerShell.

The links to the current versions are:

e PowerShell 7.3.5

o x64 processors - powershell-7.3.5-0sx-x64.pkg

o M1 processors - powershell-7.3.5-0sx-arm64.pkg
e PowerShell 7.2.12

o Xx64 processors - powershell-7.2.12-0sx-x64.pkg

o M1 processors - powershell-7.2.12-osx-arm64.pkg

If you chose to do it via a terminal, you can use the following command:

sudo installer -pkg powershell-7.3.5-0sx-x64.pkg -target /

Linux

PowerShell is available for various Linux distributions, including Ubuntu, CentOS, and Debian.
The installation process may vary slightly depending on the distribution you're using.

In this chapter, we will concentrate on Ubuntu, which provides several ways to install
PowerShell. The best way to install Powershell on Ubuntu is to use the pre-installed Snap
package manager. This universal package manager comes pre-installed and can be used to
quickly install popular software. As a result, execute:

www.alexandrumarin.com 12

https://aka.ms/powershell-release?tag=stable
https://github.com/PowerShell/PowerShell/releases/download/v7.3.5/powershell-7.3.5-osx-x64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.3.5/powershell-7.3.5-osx-arm64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.2.12/powershell-7.2.12-osx-x64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.2.12/powershell-7.2.12-osx-arm64.pkg
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux?view=powershell-7.3#ubuntu
http://www.alexandrumarin.com

sudo snap install powershell —-classic

[+1 alex@alex-virtual-machine: ~

To run a command as administrator (user "root"), use "sudo <command=".
See "man sudo_root" for details.

:~% sudo snap install powershell --classic
[sudo] password for alex:
powershell 7.3.6 from Microsoft PowerShells installed

~5

e

If you don't want to use Snap, you can use the APT package manager that Ubuntu provides.
First, run the following system update command:

sudo apt update && sudo apt upgrade

www.alexandrumarin.com 13

http://www.alexandrumarin.com

[+ alex@alex-virtual-machine: ~

To run a command as administrator (user "root"), use "sudo <command=".
See "man sudo_root” for details.

$ sudo apt update && sudo apt upgrade
password for alex:
http://security.ubuntu.com/ubuntu jammy-security InRelease
http://ro.archive.ubuntu.com/ubuntu jammy InRelease
http://ro.archive.ubuntu.comfubuntu jammy-updates InRelease
http://ro.archive.ubuntu.com/ubuntu jammy-backports InRelease
http://security.ubuntu.com/ubuntu jammy-security InRelease
http://ro.archive.ubuntu.comfubuntu jammy InRelease
http://ro.archive.ubuntu.comfubuntu jammy-updates InRelease
http://ro.archive.ubuntu.com/ubuntu jammy-backports InRelease
http://security.ubuntu.com/ubuntu jammy-security InRelease
http://ro.archive.ubuntu.com/ubuntu jammy InRelease
http://ro.archive.ubuntu.comfubuntu jammy-updates InRelease
http://ro.archive.ubuntu.com/ubuntu jammy-backports InRelease

2
=
:4
Hal
Hr 4
o=
4
Hal
2
:3
14

Then we need to install curl, gnupg2 and HTTPS support by using the following command:

sudo apt install curl apt-transport-https gnupg2 -y

www.alexandrumarin.com 14

http://www.alexandrumarin.com

[+ alex@alex-virtual-machine: ~

sing?
:% sudo apt install curl apt-transport-https gnupg2 -y

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:

1ibcurl4
The following MEW packages will be installed:

apt-transport-https curl gnupg2
The following packages will be upgraded:

1ibcurl4
1 upgraded, 3 newly installed, @ to remove and 263 not upgraded.
Need to get 201 kB/492 kB of archives.
After this operation, 680 kB of additional disk space will be used.
Ign:1 http://ro.archive.ubuntu.com/ubuntu jammy-updatesfuniverse amdé4 apt-trans
port-https all 2.4.9
Ign:2 http://ro.archive.ubuntu.com/ubuntu jammy-updates/main amd64 curl amd64 7.
81.0-1ubuntul.10
Ign:3 http://ro.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 gnupg2 al
1 2.2.27-3ubuntu2.1
Ign:1 http://ro.archive.ubuntu.com/ubuntu jammy-updatesfuniverse amdé4 apt-trans
port-https all 2.4.9
Ign:2 http://ro.archive.ubuntu.com/ubuntu jammy-updates/main amd64 curl amd64 7.
81.0-1ubuntul.10

Despite the fact that Microsoft Powershell is open source, it is not available for installation
through Ubuntu's official repository. As a result, we must include the official repo provided by
the software's developers:

echo "deb [arch=amd64,armhf,arm64 signed-by=/usr/share/keyrings/powershell.gpg] \
https://packages.microsoft.com/ubuntu/20.04/prod focal main" \
| sudo tee /etc/apt/sources.list.d/powershell.list

www.alexandrumarin.com 15

http://www.alexandrumarin.com

[+1 alex@alex-virtual-machine: ~

Temporary failure resolving 'ro.archive.ubuntu.com’
Ign:3 http://security.ubuntu.com/ubuntu jammy-updates/universe amd64 gnupgz all
2.2.27-3ubuntu2.1
Err:3 http://security.ubuntu.comf/ubuntu jammy-updates/universe amd64 gnupg2 all
2.2.27-3ubuntu2.1

Temporary failure resolving 'ro.archive.ubuntu.com’

Failed to fetch http:/fro.archive.ubuntu.comfubuntu/pool/universefafaptfapt-t

ransport-https_2.4.9 _all.deb Temporary fallure resolving 'ro.archive.ubuntu.com

Failed to fetch http://security.ubuntu.comfubuntu/pool/main/c/curlfcurl_7.81.
B-1ubuntul.10_ amd64.deb Temporary faillure resolving 'ro.archive.ubuntu.com’

Failed to fetch http://security.ubuntu.com/ubuntu/pool/universe/g/gnupg2/gnup
g2 2.2.27-3ubuntu2.1 all.deb Temporary failure resolving 'ro.archive.ubuntu.com

Unable to fetch some archives, maybe run apt-get update or try with --fix-mis
sing?
: S echo "deb [arch=amd64,armhf,armé4 signed-by=/usr/sh
are/keyrings/powershell.gpg] \
https://packages.microsoft.com/ubuntu/20.04/prod focal main" \
| sudo tee fetc/apt/sources.list.d/powershell.list
[sude] password for alex:
deb [arch=amd64,armhf,arm64 signed-by=/usr/share/keyrings/powershell.gpg] https:
//packages.microsoft.com/ubuntu/20.04/prod focal main I
1%

L

We need to add the GPG key used to sign the packages to authenticate the packages we will
receive through our newly added PowerShell repository as they are published by its
developers.

curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor | sudo tee
/usr/share/keyrings/powershell.gpg >/dev/null

www.alexandrumarin.com 16

http://www.alexandrumarin.com

[+1 alex@alex-virtual-machine: ~

https://packages.microsoft.com/ubuntu/20.04/prod focal main" \
| sudo tee fetc/apt/sources.list.dfpowershell.list
[sudo] password for alex:
deb [arch=amd64,armhf,armé64 signed-by=/usr/share/keyrings/powershell.gpg] https:
//packages.microsoft.com/ubuntu/20.084/prod focal main
:$ curl https://packages.microsoft.com/keys/microsoft.
asc | gpg --dearmor | sudo tee fusr/share/keyrings/powershell.gpg =/dev/null
Command 'curl' not found, but can be installed with:
sudo snap install curl # version 8.1.2, or
sudo apt 1install curl # version 7.81.0-1ubuntul.16
See 'snap info curl' for additional wversions.
gpg: no valid OpenPGP data found.
:-% sudo snap install curl
error: cannot install "curl”: cannot get nonce from store: persistent network
error: Post https:/fapi.snapcraft.iofapi/vl/snaps/auth/nonces: dial tcp:
lookup api.snapcraft.io: Temporary failure in name resolution
:~$ sudo snap install curl
curl 8.1.2 from Wouter van Bommel (woutervb) installed
:§ curl https://packages.microsoft.com/keys/microsoft.
asc | gpg --dearmor | sudo tee fusr/share/keyrings/powershell.gpg =/dev/null
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 983 100 983 i) 0 HEE f-=Il=-=- =-=-!--1-- 5284 I

We then need to run another system update to refresh the APT cache:

sudo apt update

After we have configured everything, we can now proceed to install PowerShell on Ubuntu by
using the following command for APT package manager:

sudo apt install powershell -y

www.alexandrumarin.com 17

http://www.alexandrumarin.com

[+1 alex@alex-virtual-machine: ~ Q =

adata [8.000 B]
Get:14 http://ro.archive.ubuntu.com/ubuntu jammy-backports/universe amd64 DEP-11
Metadata [15,4 kB]
Get:15 http://security.ubuntu.comfubuntu jammy-security/main amd64 DEP-11 Metada
ta [41,4 kB]
Get:16 http://security.ubuntu.comfubuntu jammy-securityfuniverse amd64 DEP-11 Me
tadata [22,0 kB]
Fetched 1.878 kB in 1s (779 kB/s)
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
264 packages can be upgraded. Run 'apt list --upgradable' to see them.
:~% sudo apt install powershell -y
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following MEW packages will be installed:
powershell
& upgraded, 1 newly installed, ® to remove and 264 not upgraded.
Meed to get 69,1 MB of archives.
After this operation, 176 MB of additional disk space will be used.
Get:1 https://packages.microsoft.com/ubuntu/20.04/prod focal/main amd64 powershe
11 amd64 7.3.6-1.deb [69,1 MB] I I

Regardless of the method, after the steps above are completed, PowerShell should be up
and running on your Linux distro.

[+1 alex@alex-virtual-machine: ~

:-S% powershell -v
PowerShell 7.3.6
HoH

www.alexandrumarin.com

http://www.alexandrumarin.com

Getting Started with PowerShell

Now that you've installed PowerShell, it's time to investigate its core features and
functionalities. We will take our first steps in the PowerShell environment, learning how to
execute commands, work with variables, and use cmdlets (pronounced "command-lets") to
easily complete tasks.

We will go over the syntax and structure of PowerShell commands. You'll learn how to write
and run commands, as well as the different components of a PowerShell command, such as
cmdlets, parameters, and arguments.

PowerShell's building blocks are cmdlets. We'll demonstrate how to use and combine
cmdlets to accomplish specific tasks. You'll discover available cmdlets, investigate their
documentation, and effectively use them to complete common administrative tasks.

Variables in PowerShell allow you to store and manipulate data. We'll go over the
fundamentals of variables, such as variable declaration, assignment, and data types. You will
learn how to work with strings, numbers, arrays, and other data types.

PowerShell includes a number of operators that can be used to perform arithmetic,
comparison, and logical operations. We'll look at various types of operators and how they
can be used in expressions to perform calculations and make decisions.

Control flow statements in PowerShell allow you to control the flow of execution in scripts
and functions. Conditional statements, loops, and branching statements will be covered,
allowing you to create more advanced scripts and automate complex workflows.

Using functions, you can organize your code into reusable blocks, improving the modularity
and maintainability of your scripts. We'll walk you through the process of creating and using
functions, as well as best practices for writing modular and efficient PowerShell code.

www.alexandrumarin.com 19

http://www.alexandrumarin.com

PowerShell IDE Tools

Introduction to PowerShell IDEs

PowerShell Integrated Development Environments (IDEs) are critical components of the
PowerShell scripting world. An IDE is a specialized software application that provides
developers with a comprehensive set of tools and features for more efficiently creating,
debugging, and managing PowerShell scripts. These IDEs go beyond simple text editors by
providing a user-friendly interface that makes writing, testing, and maintaining PowerShell
code easier.

PowerShell IDEs are intended to boost developer productivity by providing a feature-rich
environment optimized for PowerShell scripting. They provide features such as code
auto-completion (IntelliSense), code snippets, and code formatting that significantly
accelerate the development process. These features ensure that you spend less time on
tedious tasks and more time crafting robust scripts.

One of the most significant advantages of PowerShell IDEs is their built-in debugging
capabilities. They allow developers to set breakpoints, inspect variables, step through code,
and analyze program flow while the program is still running. Debugging tools enable rapid
error detection and correction, reducing the time and effort required for troubleshooting.

Syntax highlighting is a feature of IDEs that colorsizes different elements of PowerShell code
based on their function. This feature aids in the identification of errors or syntax errors. They
also provide real-time code analysis and error highlighting, ensuring that potential issues are
addressed before running the script.

PowerShell IDEs frequently collaborate with other development tools and utilities to enhance
the scripting experience. They can, for example, connect to version control systems like Git,
making code management and collaboration easier. In addition, some IDEs integrate with
cloud platforms like Azure, allowing for direct management of cloud resources from within
the IDE.

IDEs include a library of pre-built code snippets and templates to assist developers in

reusing common code patterns and speeding up script creation. These PowerShell snippets
cover a wide range of tasks, from basic looping constructs to complex functions, saving time
and effort while promoting consistency across scripts.

Many PowerShell IDEs are extensible, allowing users to customize their environment and add
new features via extensions and plugins. Because of this extensibility, developers can tailor
the IDE to their specific needs and preferences.

www.alexandrumarin.com 20

http://www.alexandrumarin.com

Feature Comparison of Popular PowerShell IDEs

As the market for PowerShell IDEs expands, several options become available. In this
section, we will compare the features of popular PowerShell IDEs. Their performance,
customization capabilities, integration with other tools, and overall user experience will be
evaluated. Understanding each IDE's strengths and weaknesses will allow you to make an
informed decision when selecting the best fit for your PowerShell development needs.

PowerShell ISE (Integrated Scripting Environment) and Visual Studio Code with the
PowerShell Extension are two of the most popular options. Let's compare these two IDEs to
see what they have going for them.

PowerShell ISE (Integrated Scripting Environment)

PowerShell ISE is Windows' default scripting environment for PowerShell. PowerShell ISE
(Integrated Scripting Environment) was a tool included with Windows operating systems
beginning with Windows 7 and Windows Server 2008 R2. It offered a graphical environment
for creating, testing, and debugging PowerShell scripts and commands. While PowerShell
ISE was a useful and accessible IDE for many years, Microsoft deprecated it in 2017 with the
release of PowerShell Core 6.0. PowerShell ISE is currently in maintenance mode, and it is no
longer receiving significant updates.

| B Windous Powershell 158 = [u] X
File Edit View Tools Debug Add-ons Help
= = B » *® | & |Boo|&om.
| [Unitledt.ps1 x| & commands x *
1
| Mocues: Al .
] Name:
A

Add-AppProvisionedsharedPackageContainer

Add-AppSharedPackageContainer

Add-AppvClientConnectionGroup

Add-AppvClientPackage

Add-AppvPUblishingServer

Add-ApprPackage

Add-AppxProvisionedPackage

Add-AppxValume

Add-AzADAppPermission

Add-AZADGroupMember

Add-AzAnalysisServicesAccount
| Add-AzApiManagementApiTaGateway
Add-AzApiManagementApToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplicationGatewayAutnenticationCertificate

| Ps c:\users\user>

ackendAddressPool
ackendiittpSetting
ayBackendSetting
wayCustomErar

Add-AzApplicationt ttpListenerCustemError
Add-AzApplicationt PConfiguration
Add-AzApplicationGatewayListener
Add-AzApplicationGatewayPrivateLinkConfiguration
Add-AzApplicationGatewayProbeConfig

tConfiguration

Add-AzApplication
Add-AzApplicationt

wayRequestRoutingRule
ewriteRuleSet

Ln1 Col1 100%

www.alexandrumarin.com 21

http://www.alexandrumarin.com

PowerShell ISE included a number of useful features that improved the PowerShell scripting
experience. It provided a simple, tabbed interface for script editing, allowing users to work on
multiple scripts at the same time. Its seamless integration with the PowerShell console
allowed users to execute commands directly from the script editor, making testing and
running scripts more convenient.

Intellisense support in the IDE provided context-aware auto-completion suggestions,
lowering syntax errors and increasing productivity. The use of syntax highlighting in different
colors made the code more readable and identifiable. PowerShell ISE also provided basic
debugging capabilities, such as setting breakpoints, stepping through code, and inspecting
variables, which aided in the identification and resolution of script issues. Users could
efficiently view script results, errors, and messages thanks to the separate script and output
panes. PowerShell ISE also supported script signing, which allowed users to sign scripts
with digital certificates for authenticity and security.

Despite these useful features, PowerShell ISE had limitations, such as limited extensibility,
lack of cross-platform support, and deprecation in favor of more modern IDEs such as Visual
Studio Code with the PowerShell Extension.

Visual Studio Code with PowerShell Extension

The PowerShell Extension for Visual Studio Code (VS Code) is a powerful and versatile
development environment that adds a robust set of features to PowerShell scripting.
Because of its extensive capabilities, seamless integration, and strong support for
PowerShell development, it has gained enormous popularity within the PowerShell
community.

www.alexandrumarin.com 22

http://www.alexandrumarin.com

) File Edit Selection View Go Run

cuteDefaultMSISplat; If ($defa
pFiles | ForEach-Object { Exec

Execute-MSI -Action 'Install® -Path ‘VLC Med

$installPhase = 'Post-Instal

If (-not $useDefaultMsi
nstallationPrompt -Message 'You can cust ext to appear at the end of an install or r

e -ieq "Uninstall’) {

TERMINAL M~ - ~ x

=] powershell
[=] PowerShell ...

PowersShell E
Copyright (c) Micr

https://aka.ms/vscode-powershell
Type ‘help” to get help.

PS C:\Users\User>

In211,Col 9 Spaces:4 UTF-8withBOM CRLF {} PowerShell & 01

One of Visual Studio Code's key strengths with the PowerShell Extension is its
cross-platform compatibility, which allows users to work on Windows, macOS, and Linux
systems. Because of this flexibility, PowerShell developers can work in their preferred
operating system, making it an appealing choice for a wide range of users.

The PowerShell Extension includes extensive Intellisense support, including intelligent code
completion, suggestions, and parameter information, which improves the development
experience and reduces the likelihood of syntax errors. It also has real-time syntax
highlighting, which makes it easier to read and identify different elements of the code.

Another notable feature is the ability to debug PowerShell scripts in Visual Studio Code. The
integrated debugger provides essential features such as setting breakpoints, stepping
through code, inspecting variables, and evaluating expressions, allowing developers to
efficiently identify and fix issues.

The extensibility of Visual Studio Code is a significant benefit, with a vast ecosystem of
extensions available. This includes PowerShell extensions, which allow users to integrate
additional tools, customize their workflow, and enhance the IDE to meet their specific
requirements.

Another noteworthy feature is the integrated version control system. The built-in Git support
allows PowerShell developers to manage their scripts and collaborate with others in a
seamless manner, facilitating efficient version control and team collaboration.

www.alexandrumarin.com 23

http://www.alexandrumarin.com

Furthermore, Visual Studio Code has a clean and user-friendly interface that is highly
customizable. Users can customize their layout, themes, and keybindings, tailoring the IDE to
their preferences and making it an enjoyable environment for daily scripting tasks.

To summarize, Visual Studio Code with the PowerShell Extension is an excellent
development environment for PowerShell scripting. Its cross-platform compatibility,
powerful Intellisense, advanced debugging capabilities, extensibility, and user-friendly
interface make it a top choice for PowerShell developers looking for a versatile and efficient
IDE.

Although Visual Studio Code with the PowerShell Extension has many benefits, it is
important to consider some of its limitations. To begin, when compared to more lightweight
editors such as PowerShell ISE, Visual Studio Code can be more resource-intensive, which
can have an impact on performance, particularly on low-end systems.

Second, for newcomers who are used to simpler editors like PowerShell ISE, Visual Studio
Code has a steeper learning curve. Furthermore, while the extension ecosystem improves
functionality, installing a large number of extensions may increase startup time and resource
usage. The lack of a built-in forms designer, which is available in PowerShell ISE, is one
disadvantage, forcing users to rely on external tools or extensions for graphical interface
design. Furthermore, while Visual Studio Code is flexible and extensible, some users may
prefer PowerShell ISE due to its tighter integration with other Microsoft technologies.

When compared to PowerShell ISE, which comes pre-installed with Windows, installing
Visual Studio Code for PowerShell development may necessitate additional configuration.

Finally, PowerShell ISE is in maintenance mode and will not receive any further updates,
despite the fact that some users may still prefer its familiar interface and simplicity.
Individual preferences, project requirements, and the overall development environment all
influence the decision between PowerShell ISE and Visual Studio Code as a PowerShell IDE.

Installing the PowerShell extension in Visual Studio Code is a simple process. Click
Extensions in the left menu pane and search for PowerShell.

www.alexandrumarin.com 24

http://www.alexandrumarin.com

%) File Edit Selection View Go Run = | P Search

EXTENSIONS. Y O Deploy-Application.ps1 9+ X

Fear ch Extensions in Marketplace » Users > User » Downloads > PSAppDeployToolkit v3.9.3 > Toolkit > > loy-Application.ps1 > ...
$ExecuteDefaultMsISplat.Add(' Transform’, $defaultMstFile)
Execute-MSI @ExecuteDefaultMSISplat; If ($defaultMspFiles) {
e i 4 $defaultMspFiles | ForEach-Object { Execute-MSI -Action ‘Patch® -Path §_ 1}
Develop PowerShell module.
 Microsoft

-ElseIF ($deploymentType -ieq 'Uninstall®) {

PROBLEMS (14 OUTPUT DEBUG CONSOLE TERMINAL

PowerShell Extension v2023.6.8
Copyright (c) Microseft Corporation.

https://aka.ms/vscode-powershell
v RECOMMENDED 2 Type "help® to get help.

Debug your application...

¥
6 Debugger for... ®3M %45 pg c.\ysers\User>
@ Firefox DevTools Install

*
{6} Notepad++ ... & 13M % 45
! Popular Notepad++ keybin...

X @oM14 Ln211,Col9 Spaces:4 UTF-8 with BOM

www.alexandrumarin.com 25

http://www.alexandrumarin.com

Other PowerShell IDE Options

Of course, there are numerous alternatives to PowerShell IDEs available, so let's take a closer
look at some of the other PowerShell IDE options available besides PowerShell ISE and VS
Code. We'll look at IDEs with PowerShell syntax highlighting, such as SAPIEN Technologies'
PowerShell Studio, PowerGUI, and Sublime Text. Each IDE has its own set of features, so
understanding their strengths and use cases is critical for making an informed decision.

PowerShell Studio

PowerShell Studio is a robust Integrated Development Environment (IDE) built specifically for
PowerShell scripting and development. PowerShell Studio, created by SAPIEN Technologies,
provides a comprehensive set of features to streamline the development process, boost
productivity, and simplify the creation of sophisticated PowerShell scripts and modules.

Rer O P 1 | Windows-1252+ | Wedons (@

One of PowerShell Studio's standout features is its advanced script editor, which includes
syntax highlighting, code completion, and code folding to assist developers in writing clean,
error-free code. Context-sensitive help is also available in the editor, making it simple to find
information about cmdlets, functions, and other PowerShell elements as you type.

The form designer is another notable feature of PowerShell Studio. Developers can use the
form designer to create graphical user interfaces (GUIs) for their PowerShell scripts and
modules. Users can use the drag-and-drop interface to add controls such as buttons, text
boxes, checkboxes, and more, and then define their properties and events using PowerShell
code. This makes it much easier to create professional-looking and interactive GUIs without
having to write a lot of code by hand.

www.alexandrumarin.com 26

https://www.sapien.com/software/powershell_studio
http://www.alexandrumarin.com

PowerShell Studio also includes a comprehensive debugger, which allows developers to step
through their code, set breakpoints, inspect variables, and effectively troubleshoot issues.
The debugger can drastically reduce the amount of time and effort required to find and fix
bugs in PowerShell scripts.

PowerShell Studio also includes a PowerShell script packager, which enables developers to
package their scripts into executable or Windows Installer files (MSI). PowerShell scripts can
now be distributed as standalone applications, making them easier to share and deploy.
PowerShell Studio comes with a large number of pre-built code snippets and templates to
help with common scripting tasks. These PowerShell snippets cover a wide range of
PowerShell functionality, from simple tasks to more complex operations, allowing
developers to save time and effort when writing repetitive code.

Furthermore, PowerShell Studio integrates version control, making it easier for teams to
collaborate and manage script versions using popular version control systems such as Git or
TFS.

Despite its extensive feature set, PowerShell Studio may have a steeper learning curve for
newcomers, particularly those new to PowerShell development. Furthermore, some users
may find the software to be relatively expensive in comparison to other PowerShell IDE
options.

Sublime Text

Sublime Text is a well-known cross-platform text editor known for its speed, ease of use, and
extensibility. While Sublime Text does not have a dedicated PowerShell IDE like PowerShell
Studio or Visual Studio Code, it can be easily transformed into a powerful PowerShell
development environment by installing the necessary packages and plugins.

Sublime Text's extensibility via packages is one of its key features. Install the "PowerShell"
package for PowerShell development, which provides syntax highlighting and code
completion for PowerShell scripts. This package recognizes PowerShell keywords, cmdlets,
and variables, making PowerShell code easier to read and write in Sublime Text.

Sublime Text also supports a variety of themes and color schemes, allowing you to tailor the
editor's appearance to your preferences. When working with PowerShell scripts, this can
improve readability and overall experience.

Sublime Text also has support for multiple cursors and quick editing features. This enables
you to edit multiple lines at the same time, rename variables in a single step, and quickly
navigate through your code, saving you time and effort during development.

Sublime Text offers a wide range of plugins and packages for other programming languages
in addition to PowerShell-specific features, making it a versatile text editor for developers
working with multiple technologies.

While Sublime Text with the PowerShell package provides several advantages for PowerShell

www.alexandrumarin.com 27

https://www.sublimetext.com/
http://www.alexandrumarin.com

scripting, it may not offer the same level of integration and functionality as dedicated
PowerShell IDEs such as PowerShell Studio or Visual Studio Code. For example, it may lack
advanced debugging capabilities and specialized PowerShell development tools.

As mentioned above, by default, Sublime Text doesn’t have a syntax highlighting feature for
PowerShell, but that is easy to install. After you installed Sublime Text, open it and navigate

to Tools > Install package control.

Once the package control was installed, navigate to Tools > Command Palette:

E untitled = - Sublime Text (UNREGISTERED) = =] x

File Edit Selection Find View Gote Tools Project Preferences Help

Command Palette... Ctrl+Shift+P
Snippets...

Build System >
Build Ctrl+B
Build With... Ctrl+5hift+B

Build Results
Save All on Build

Record Macro Ctrl+Q

Save Macro...

Macros

Developer

L] Line 1, Column 1 Tab Size: 4 Plain Text

Next, type “Install package” and type enter:

www.alexandrumarin.com 28

https://github.com/SublimeText/PowerShell
http://www.alexandrumarin.com

E untitled « - Sublime Text (UNREGISTERED) = O x

File Edit Selection Find View Goto Tools Project Preferences Help

install-packagel

Package Control: Install Package
Package Control: Install Local Dependency
Package Control: Advanced Install Package

I Line 1, Column 1 Tab Size: 4 Plain Text

Next, type PowerShell and click Enter:

www.alexandrumarin.com 29

http://www.alexandrumarin.com

E untitled = - Sublime Text (UNREGISTERED) = O

File Edit Selection Find View Goto Tools Project Preferences Help

powershel‘

PowerShell
Support for the M5 PowerShell programming language.
install v3.1.0; github.com/SublimeText/PowerShel

L5P-PowerShellEditorServices

Corgires lamauaga e
SEMVICES IGNGUage SErver

install v (0 github.com/sublimelsp/LSP-PowerShellEditorServices

Powershell Help Generator
Generates pow 1! help template for the the selected method name

instal L 10.15.14.08.51; github.com/sponte/sublime_powershell_help

Cuhklimal intar-rantrib-Dawarehall

I Line 1, Column 1 Tab Size: 4 Plain Text

And that is it, the PowerShell syntax highlighter is now installed. Once you open a PowerShell
script you will see the highlighting.

www.alexandrumarin.com 30

http://www.alexandrumarin.com

E Ch\Users\WDAGUtilityAccount\Desktop\downloadmsix.ps1 - Sublime Text {UNREGISTERED) = O x

File Edit Selection Find View Goto Tools Project Preferences Help

o P downloadmsiups1

$wchttp N, "applicatio
fHtmlResult

»The links were

$TableEnd={$HtmlResult

$SemiCleaned=FfHtmlResult

tml

This works in Pow »h n OFfi installed
$newHtml s leaned)

atch {

T]

I Line 1, Column 1 Spaces: 4 PowerShell

www.alexandrumarin.com 31

http://www.alexandrumarin.com

PowerGUI

PowerGUI is a PowerShell integrated development environment (IDE) that is designed to
simplify and improve PowerShell scripting and automation tasks. It was created by Quest
Software, which is now a part of Dell, and features a user-friendly interface with several
features tailored to PowerShell development.

PowerGUI Script Editor - O
p

File Edit View Go Debug Tools Help

DNEH@S Q|4 2@ @ _: b |5=(E & [wnoutserstparamsters here-
Script Explorer -2 x StartPage,” 9] psi 4 b v x || Variables
== Seripts. 46/ SHtmlResult = Swchotp.UploadString (SURI, SmyParamecers) —|> s

== Desktop 47
L4 downloadmsix.ps1 ag &5

$PSCommandpath
$PSSiptRoot

51 if (§Start -eq -1)
52i0{

53 write-host "Could not get the links, please check the StoreURL."
54 exit

57 $TableEnd=($HtmlResult.LastIndexOf ("</table>")+8)

60, $SemiCleaned=$HtmlResult.Substring($start,$TableEnd-$start)

J

PowerShell Console > 3%

B $env:PGSnippetPath

Script execution completed. Ln1|Col1|Ch1]| 64-bit | STA | Unicode http://powergui.org/ |

PowerGUI's graphical user interface is one of its key features, making it easier for both new
and experienced PowerShell users to work with PowerShell scripts. The IDE includes a rich
script editor with syntax highlighting, code completion, and integrated debugging to make
writing and troubleshooting PowerShell code easier.

PowerGUI also includes a script editor with multiple tabs, allowing you to work on multiple
scripts at the same time and easily switch between them. When dealing with complex
projects or managing multiple PowerShell scripts at once, this can significantly improve
productivity. This also gives you the ability to create graphical user interfaces (GUIs) for
PowerShell scripts. It offers a drag-and-drop interface for designing Windows Forms-based
GUIs, allowing you to create interactive and user-friendly interfaces for your PowerShell
scripts without requiring extensive coding.

PowerGUI integrates with PowerPacks, which are modules or extensions that extend the
IDE's functionality. PowerPacks add more cmdlets, script templates, and other tools to help
with PowerShell development. vPowerGUI also includes a script repository where you can
share and access scripts contributed by the community, allowing you to benefit from the
collective knowledge and experience of other PowerShell users.

While PowerGUI was once a popular choice for PowerShell development, it's important to

www.alexandrumarin.com 32

http://www.alexandrumarin.com

note that it hasn't received any significant updates in recent years, and development appears
to have slowed. As a result, some features or compatibility with the most recent versions of
PowerShell may be limited in comparison to more actively maintained tools such as Visual
Studio Code with the PowerShell extension.

www.alexandrumarin.com 33

http://www.alexandrumarin.com

Choosing the Right IDE for Your Needs

Choosing the best Integrated Development Environment (IDE) for your PowerShell
requirements is a critical decision that can have a significant impact on your productivity and
development experience. Each IDE has advantages and disadvantages, so it's critical to
consider your specific needs and preferences when making a decision. Here are some
important factors to consider when choosing an IDE for PowerShell development:

e Consider the IDE's feature set and make sure it includes the features you require for
your PowerShell projects, such as code highlighting, code completion, debugging
capabilities, and an integrated terminal.

e Determine how comfortable you are navigating and working within the IDE's user
interface (Ul). A clean and intuitive user interface can boost your productivity and
make it easier to focus on coding tasks.

e Check to see if the IDE supports the installation of extensions or plugins that can
extend its functionality and tailor it to your specific requirements. A thriving extension
development community can add significant value to the IDE.

e Check that the IDE integrates seamlessly with PowerShell, allowing you to run scripts,
access cmdlets, and perform PowerShell-specific tasks efficiently.

e Look for an IDE that has a vibrant and engaged community. When you encounter
problems or have questions about the IDE or PowerShell development, community
support can provide valuable resources, tutorials, and assistance.

e Consider whether the IDE supports multiple platforms if you work on different
operating systems or collaborate with developers who use different platforms.

e To ensure that the IDE can handle your workload without slowing down or becoming
unresponsive, test its performance with typical PowerShell projects.

e Examine how often the IDE is updated, as well as how responsive the developers are
to bug fixes and user feedback. The IDE is actively maintained and improved, as
evidenced by regular updates.

e Take into account the IDE's learning curve. If you're new to PowerShell or coding in
general, an IDE with a user-friendly interface and extensive documentation can help
you get started.

e Check that the IDE integrates smoothly with source control systems such as Git or
TFS, especially if you use them for version control and collaboration.

Ultimately, the best IDE for PowerShell development will be determined by your specific
needs, preferences, and project complexity. Because of its active community, frequent
updates, and extensive features, many developers consider Visual Studio Code with the
PowerShell extension to be a versatile and powerful option. PowerShell Studio and
PowerGUI provide more focused PowerShell environments, with PowerGUI favoring a
graphical user interface. It's a good idea to try out various IDEs to see which one best fits
your workflow and project requirements.

www.alexandrumarin.com 34

http://www.alexandrumarin.com

PowerShell Basics

PowerShell Command Syntax

This section will go over the fundamentals of PowerShell command syntax. Understanding
how to structure and write PowerShell commands is critical for making the most of this
scripting language's capabilities.

PowerShell commands have a distinct verb-noun syntax, which is also known as the cmdlet
naming convention. The verb describes the action that will be carried out, whereas the noun
represents the target or object on which the action will be carried out. The command
"Get-Process," for example, retrieves information about currently running processes, where
"Get" is the verb and "Process" is the noun.

To create a PowerShell command, combine the verb and the noun with a hyphen (-). You
can also include parameters to customize the command's behavior. A hyphen is followed by
the parameter name and its corresponding value to denote a parameter. For example, the
command "Get-Process -Name chrome" returns information about the Chrome process.

Retrieving Information about Running Processes:

Get-Process

2 windows Powershell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\User> Get-Process

Handles NPM(K) Id ProcessName
4896 8 AdjustService
23416 AdobeIPCBroker
15968 Agent
7296 B AggregatorHost
2816 B amdfendrsr
16588 amdow
B 22908 AMDRSServ
71892 70372 0.6 296860 AMDRSSrcExt
852860 113696 .8 9116 ApCent
3568 13836 5864 8 AppleMobileDeviceService
17600 36016 0.E 9812 ApplicationFrameHost
1696 68U6 5084 8 armsvc
us32 17232 3828 atieclxx
1880 7372 2804 0 atiesrxx
9860 17756 0. 3668 8 audiodg
58608 159684 5828 B AUEPDU
2676 3952 5 7848 AUEPMaster
3812 15192 6.06 5660 backgroundTaskHost
5892 23896 9.8 11448 backgroundTaskHost
17732 589608 B 13872 backgroundTaskHost
412 17168 8.00 22772 backgroundTaskHost

PowerShell allows you to specify parameters in two ways: positional parameters and named
parameters. Positional parameters are determined by the order in which they appear in the

www.alexandrumarin.com 35

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-process?view=powershell-7.3
http://www.alexandrumarin.com

command. "Set-Location C:\Windows," for example, changes the current location to the
specified directory.

Setting the Current Location:

Set-Location C:\Windows

2 windows PowerShell

Windows Powershell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

C:\Users\User> Set-Location C:\Windows
C:\Windows> |

PS
PS

By using the parameter name, named parameters are explicitly assigned a value. This
enables you to specify parameters in any order. "Get-Process -Name chrome -Module," for
example, retrieves information about the Chrome process and its associated modules.

Retrieving Information about a Specific Process and its Modules:

Get-Process -Name chrome -Module

www.alexandrumarin.com 36

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-location?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-process?view=powershell-7.3
http://www.alexandrumarin.com

2 windows Powershell

Windows

Powershell

Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSwWindows

PS C:\Users\User> Get-Process

size(K)

2128
776
3724
6o
u776
668
376
1396
ue
696
656
1116
ug
ugs
212260
8608
616
1092
3620
452

ModuleName

ntdll.dll
KERNEL32.DLL
KERNELBASE.d1ll
apphelp.dll
AcLayers.DLL
msvert.dll
SHLWAPI.d1ll
chrome_elf.dll
VERSION.d1l
ADVAPI32.d1l1l
sechost.dll
RPCRT4.d11
CRYPTBASE.DLL
beryptPrimitives.dll
chrome.dll
OLEAUT32.d11
msvcp_win.dll
ucrtbase.dll
combase.dll
ws2_32.d11

chrome

FileName

C
C
C
5
C
C
5
C
C
C
5
C
C
5
C
C
C
5
C
C
C

:\Program Files\Google\Chrome\Application\chrome.exe
:\WINDOWS\SYSTEM32\ntdll.d1ll
:\WINDOWS\System32\KERNEL32.DLL
\WINDOWS\System32\KERNELBASE.dll
:\WINDOWS\SYSTEM32\apphelp.dll
:\WINDOWS\SYSTEM32\AcLayers.DLL
:\WINDOWS\System32\msvcrt.dll
\WINDOWS\System32\SHLWAPI .dll

:\Program Files\Google\Chrome\Application\114.8.5735
:\WINDOWS\SYSTEM32\VERSION.d11l
\WINDOWS\System32\ADVAPI32.d1ll
\WINDOWS\System32\sechost.dll
:\WINDOWS\System32\RPCRTU.d11l
:\WINDOWS\SYSTEM32\CRYPTBASE.DLL
:\WINDOWS\System32\bcryptPrimitives.dll

:\Program Files\Google\Chrome\Application\114.8.5735
:\WINDOWS\System32\OLEAUT32.d11
:\WINDOWS\System32\msvcp_win.dll
:\WINDOWS\System32\ucrtbase.dll
:\WINDOWS\System32\combase.dll
:\WINDOWS\System32\W52_32.d11

Some cmdlets have multiple sets of parameters, which are referred to as parameter sets.
Each parameter set represents a distinct set of parameters that can be used in conjunction
with one another. When using a cmdlet with parameter sets, you must provide the necessary
parameters for the specific set you intend to use.

Creating a New Folder:

New-Item -Path C:\Temp -Name "NewFolder" -ltemType Directory

www.alexandrumarin.com

37

http://www.alexandrumarin.com

2 windows Powershell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSwWindows

PS C:\Users\User> New-Item C:\Temp Directory

Directory: C:\Temp
LastWriteTime

Mode Length Name

7/15/2023 12:16 AM

PS C:\Users\User> |

NewFolder

The ability to chain commands together using the pipeline operator (|) is one of PowerShell's
most powerful features. The pipeline enables you to easily perform complex operations by
passing the output of one command as input to another.

Retrieving Running Services and Sorting by Status:

Get-Service | Sort-Object -Property Status

22 Windows PowerShell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\User> Get-Service | Sort-Object

Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped

www.alexandrumarin.com

Name

NaturalAuthenti. ..

MsKeyboardFilter
msiserver
NcdAutoSetup
VacSve

NcaSvc

MozillaMaintenance
MixedRealityOpe. ..
MicrosoftEdgeEl. ..

MSiSCSI

MSDTC

I
O0CButtonService
upnphost

NlaSvc
OpenVPNService
UmRdpService

OneDrive Update...

NetSetupSvc
Netman
Netlogon

Status
DisplayName

Natural Authentication

Microsoft Keyboard Filter

Windows Installer

Network Connected Devices Auto-Setup
Volumetric Audio Compositor Service
Network Connectivity Assistant
Mozilla Maintenance Service

Windows Mixed Reality OpenXR Service
Microsoft Edge Elevation Service (M...
Microsoft iSCSI Initiator Service
Distributed Transaction Coordinator
Virtual Disk

O0CButtonService

UPnP Device Host

Network Location Awareness
OpenVPNService

Remote Desktop Services UserMode Po...
OneDrive Updater rvice

Network Setup Service

Network Connections

Netlogon

38

http://www.alexandrumarin.com

By default, PowerShell displays command output directly in the console. You can, however,
save the output in variables for later processing or redirect it to files.

Get-Process | Out-File -FilePath "C:\Output.txt"

E outputnd

File Edit View

Handles NPM(K) z WS(K) cPU(s) Id SI ProcessName

4896 @ AdjustService
11186 0.06 23416 1 AdobeIPCBroker

) B¥ Administrator: Windows Pows X + | v

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

S C:\Users\User> Get-Process | Out-File
S C:\Users\User> |

101324
29052
3520
46144

19988
169656
6812
151392
26268
13260

Ln1,Col1

Aliases are shortcuts for commonly used commands in PowerShell. Aliases allow you to use
a command with a shorter or more familiar name instead of typing the full cmdlet name.

Using Alias for Listing Files:

Is

www.alexandrumarin.com 39

http://www.alexandrumarin.com

B administrator: Windows Powt

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSwWindows

PS C:\Users\User> 1s

Directory: C:\Users\User

Mode LastWriteTime Length Name

12/15/2022 138 PM .android

6/13/2823 E PM .dotnet

9/12/2022 : PH .insomniac

10/28/2022 : PH .ms-ad

10/17/2022 : PM .nuget

2/26/2022 118 AM .origin

2/26/2022 118 AM .QtWebEngineProcess
9/3/2022 (45 AM .templateengine
9/3/2022 132 AM .vscode

5/10/2023 8:16 AM .vscode-cli
9/23/2022 : PH Contacts

3/28/2023 187 PM Creative Cloud Files
7/14/2023 131 PM Desktop

7/13/2023 118 PM Documents

7/15/2023 : AM Downloads

12/208/2022 : PM dwhelper

9/23/2822 E PM Favorites

One other example of alias that IT Pros have seen lately is in regards to the MSIX PowerShell
cmdlets which Microsoft puts at disposal. As an example, Microsoft has the
Get-AppxPackage cmdlet fully documented on their page, but you can also use
Get-AppPackage alias.

Get-AppPackage

B administrator: Windows Powt

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSwWindows

PS C:\Users\User> Get-AppPackage

Name : Microsoft.vVCLibs.140.00

Publisher : CN=Microsoft Corporation, O=Microsoft Corporation, L=Redmond, S=Washington, C=US
Architecture : XeU

ResourceId

Version : 14.0.36704.0

PackageFullName : Microsoft.VCLibs.1u8.00_14.8.308704.0_x6U__8wekyb3d8bbwe

InstallLocation : C:\Program Files\WindowsApps\microsoft.vclibs.146.88_14.0.308704.0_x6uU__8wekyb3d8bbwe
IsFramework : True

PackageFamilyName : Microsoft.VCLibs.1u8.06_8wekyb3d8bbwe

PublisherId : Buwekyb3d8bbwe

IsResourcePackage : False

IsBundle : False

IsDevelopmentMode : False

NonRemovable : False

IsPartiallyStaged : False

SignatureKind : Store

Status : Ok

Name : Microsoft.Windows.00BENetworkConnectionFlow

Publisher : CN=Microsoft Windows, O=Microsoft Corporation, L=Redmond, S=Washington, C=US
Architecture : Neutral

Resourceld

www.alexandrumarin.com 40

https://www.advancedinstaller.com/msix-powershell-cmdlets.html
https://www.advancedinstaller.com/msix-powershell-cmdlets.html
https://learn.microsoft.com/en-us/powershell/module/appx/get-appxpackage?view=windowsserver2022-ps
http://www.alexandrumarin.com

Working with Cmdlets

PowerShell cmdlets (pronounced "command-lets") are the building blocks of PowerShell
scripting. They are brief commands that perform specific tasks or retrieve data from various
sources. Let's take a look at how they can help you automate tasks and better manage your
systems.

Cmdlets have a consistent naming convention that uses a verb-noun format. The verb
denotes the action to be carried out, whereas the noun denotes the target or object on which
the action is carried out. This standardized structure makes it easier to remember and apply
cmdlets.

PowerShell includes a large number of built-in cmdlets for a variety of tasks, ranging from
managing files and directories to working with network resources and system
configurations. The "Get-Command" cmdlet can be used to explore the available cmdlets.

Finding All Available Cmdlets:

Get-Command -CommandType Cmdlet

[J) B Administrator: Windows Powe X + -

Windows Powershell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
PS C:\Users\User> Get-Command Cmdlet

CommandType Name ersi Source
Cmdlet Add-AppProvisionedSharedPackageContainer
Cmdlet Add-AppSharedPackageContainer

Cmdlet Add-AppvClientConnectionGroup

Cmdlet Add-AppvClientPackage

Cmdlet Add-AppvPublishingServer

Cmdlet Add-AppxPackage

Cmdlet Add-AppxProvisionedPackage

Cmdlet Add-AppxVolume

Cmdlet Add-BitsFile

Cmdlet Add-CertificateEnrollmentPolicyServer
Cmdlet Add-Computer

Cmdlet Add-Content

Cmdlet Add-History

Cmdlet Add-JobTrigger

Cmdlet Add-KdsRootKey

Cmdlet Add-LocalGroupMember

Cmdlet Add-Member

Cmdlet Add-PSSnapin

Cmdlet Add-SignerRule

Cmdlet Add-Type

Cmdlet Add-WindowsCapability

Appx

AppvClient

AppvClient

AppvClient

Appx

Dism

Appx

BitsTransfer

PKI
Microsoft.PowerShell.Management
Microsoft.PowerShell.Management
Microsoft.PowerShell.Core
PSScheduledJob

Hds
Microsoft.PowerShell.LocalAccounts
Microsoft.PowerShell.Utility
Microsoft.PowerShell.Core
ConfigCI
Microsoft.PowerShell.Utility
Dism

WWHWWHFFEFFWWWHEFNNWLNKFERFREFENW

Cmdlets are invoked by typing their name followed by any necessary parameters.
Tab-completion in PowerShell helps you to swiftly browse and pick cmdlets, making your
programming experience more efficient.

www.alexandrumarin.com 41

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-command?view=powershell-7.3
http://www.alexandrumarin.com

The "Get-Help" cmdlet gives thorough information on other cmdlets, how to use them, and
what parameters are available. It is a useful resource for learning and mastering PowerShell.

Get-Help Get-Process

"-' 2 Administrator: Windows Pow: X + | =

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
PS C:\Users\User> Get-Help Get-Process

NAME
Get-Process

SYNTAX
Get-Process [[-Name] <string[]>] [-ComputerName <string[]l>] [-Module] [-FileVersionInfo] [<CommonParameters>]

Get-Process [[-Name] <string[]>] -IncludeUserName [<CommonParameters>]

Get-Process -Id <int[]> -IncludeUserName [<CommonParameters>]

Get-Process -Id <int[]> [-ComputerName <string[]>] [-Module] [-FileVersionInfo] [<CommonParameters>]

Get-Process -InputObject <Process[]> -IncludeUserName [<CommonParameters>]

Get-Process -InputObject <Process[]> [-ComputerName <string[]>] [-Module] [-FileVersionInfo]l [<CommonParameters>]
ALIASES

gps
ps

REMARKS

Cmdlets frequently require input to carry out their intended operations. PowerShell provides
several methods for passing input to cmdlets. You can provide input directly as parameters
or use the pipeline to pass output from one cmdlet as input to another.

The "Sort-Object" cmdlet arranges items according on a property that you specify. You can
use the pipeline to pass results from the "Get-Process" cmdlet and sort the processes by
CPU consumption.

Get-Process | Sort-Object -Property CPU

www.alexandrumarin.com 42

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-help?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/sort-object?view=powershell-7.3
http://www.alexandrumarin.com

B administrator: Windows Powt

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSwWindows

PS C:\Users\User> Get-Process | Sort-Object

Handles NPM(K) PM(K) WS(K) CPU(s) ProcessName

16860 8.88 30836 RuntimeBroker
187u8 6.06 9636 conhost

18592 pe 231668 conhost

7192 BE 6936 B svchost

9628 B8 31188 B SearchFilterHost
15000 8.88 26416 @ SearchProtocolHost
15128 BE 3744 B dasHost

185u8 8.80 31212 RuntimeBroker
8528 6.06 5904 B svchost

46784 8.00 24376 steamwebhelper
17524 6.06 73u8 B svchost

65460 0.08 5928 B jhi_service

7264 0.0€ 7656 svchost

7272 B8 7euy B svchost

88uU8 6.06 4888 B conhost

12436 pE 9308 conhost

162u40 B. 19664 cmd

7084 6. 288280 cncmd

U720 8. 204 B Secure System
18364 8. 2556 B svchost

PowerShell cmdlets such as "Where-Object" and "Select-Object" enable you to filter and
select specific data from a larger set of results.

The "Where-Object" cmdlet filters objects based on a condition that you specify. In the
following example, we filter processes with a CPU utilization of more than 50%.

Get-Process | Where-Object { S_.CPU -gt 50 }

B2 Administrator: Windows Powt

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
PS C:\Users\User> Get—-Process | Where-Object { .CPU

Handles NPM(K) PM(K) WS(K) cPU(s) Id
3962u4 471560 o 916U
122 1436412 267896 Jo 20448
24 21876 28684 08.20 16000
138 421232 3ousu4 . 5432 B MsMpEng

:\Users\User> |

www.alexandrumarin.com 43

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-object?view=powershell-7.3
http://www.alexandrumarin.com

As mentioned, PowerShell's ability to combine multiple cmdlets using the pipeline operator is
one of its strengths. This allows you to easily create powerful one-liners and perform
complex operations.

By using Get-Service and Restart-Service, the following command retrieves all services
containing "Print" in their names, filters them to select only the stopped ones, and then
restarts them.

Get-Service -Name *Print* | Where-Object { S_.Status -eq "Stopped" } | Restart-Service

[J) B Administrator: Windows Powe X + -

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\User> Get-Service #Print* | Where-Object { .Status } | Restart-Service
PS C:\Users\User> |

PowerShell allows you to create your own custom cmdlets in addition to the built-in cmdlets
by using PowerShell scripting or programming languages such as C#. This gives you the
ability to extend PowerShell's functionality and tailor it to your specific needs.

www.alexandrumarin.com 44

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-service?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/restart-service?view=powershell-7.3
http://www.alexandrumarin.com

Variables and Data Types

Variables are used to store and manipulate data in PowerShell. Understanding variables and
data types is critical for scripting success. In this chapter, we will look at PowerShell
variables and the various data types that are supported. We'll also go over how to use
variables, assign values to them, and perform operations on them.

Variables are data containers with names. They enable you to save and retrieve data
throughout your script. PowerShell uses a dynamic type system, which means you don't have
to explicitly declare the da

When naming variables, keep the following rules in mind:

Variable names must start with a letter or underscore.
They can contain letters, numbers, and underscores.
Variable names are case-insensitive.

Avoid using reserved keywords as variable names.

PowerShell supports a variety of data types, each of which serves a specific purpose. Let's
look at some of the most common data types:

Data Types

String

A string is a collection of characters surrounded by single or double quotes. It represents text
and is used for storing and manipulating textual data.

Sname = "John Doe"

Integer

An integer is a number that has no decimal places. It is utilised in numeric operations
involving whole numbers.

Sage = 25

Float and Double

Numbers with decimal places are represented by the float and double data types. They are
used for more precise fractional number calculations.

www.alexandrumarin.com 45

http://www.alexandrumarin.com

Sprice =9.99

Boolean

A logical value is represented by a Boolean data type. It can be in one of two states: True or
False. Booleans are often used in conditional statements and logical operations.

SisStudent = Strue

Array

An array is an ordered collection of values. It allows you to store multiple items in a single
variable. Each item in the array has an index that represents its position.

Snumbers=1,2,3,4,5

Hash Table

A hash table, also known as an associative array or dictionary, stores key-value pairs. It
allows you to retrieve values based on their corresponding keys.

Sperson = @{
"Name" = "John",
"Age" - 25'

}

To assign a value to a variable, use the assignment operator "=" followed by the desired

value.

Sname = "John Doe"

Variable expansion allows you to include the value of a variable within a string. Use the "$"
symbol followed by the variable name inside double quotes.

Smessage = "Hello, Sname!"

www.alexandrumarin.com 46

http://www.alexandrumarin.com

Variable Scopes

Understanding variable scopes is critical when writing PowerShell scripts for effective data
management and access. Variable scopes define the visibility and lifetime of variables
throughout your script. You can ensure proper data management, avoid naming conflicts,
and optimize script performance by understanding the various scopes available in
PowerShell. PowerShell has the following scopes:

e Global: Variables accessible throughout the entire script.
e Script: Variables specific to the current script.
e Function: Variables within a function.
e Local: Variables within a specific block or loop.
Local Scope

The default scope in PowerShell is local scope, which refers to variables defined within a
specific script block or function. Variables declared in the local scope can only be accessed
within the scope in which they are defined.

function MyFunction {
SlocalVariable = "Hello, local scope!"
Write-Host SlocalVariable

MyFunction # Output: Hello, local scope!
Write-Host SlocalVariable # Error: SlocalVariable is not defined

www.alexandrumarin.com 47

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_scopes?view=powershell-7.3
http://www.alexandrumarin.com

+ B Windows PowerShell ISE
file Edit View Tools Debug Add-ons Help
= = R a8 » b
| Untitled1.ps1*(Recovered)
| UntitledS.ps1*(Recovered) Untitled6.ps1*(Recovered)
| Untitled10.ps1*(Recovered)
1 Sfunction MyFunction {
\Write-Host $localvariable

i

2
3
2
5
6
7 Write-Host $localvariable
8

> function MyFunction {
iable = "Hello, local scope!™
t $localvariable

MyFunction # Output: Hello, local scope!
Write-Host $localVariable

Hello, Tocal scope!

Untitled2.ps1(Recovered)

Untitled11.ps1*(Recovered)

$localvariable = "Hello, local scope!”

MyFunction # output: tello, local scope!

= B
Untitled3.ps1*{Recovered)
Untitled7.ps1*(Recovered)

AppFinderpsi

& ’;__

o [0 .
copyfolder.psi

Untitled8.ps1*(Recovered)

Untitled13.ps1*(Recovered)

Untitleds.ps1*{Recovered)
SearchApplicationGetUninstallKey.ps1
Untitled14,ps1*

- o0 x
Commands X x
Mosues: | Al .
Name:

A
Add-AppProvisionedsharedPackageContainer
Add-AppSharedPackageContainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-ApprPackage
Add-AppxProvisionedPackage
Add-AppxValume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrolimentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDonServerAddress
Add-DnsClientNrotRule
Add-DtcClusterTMapping
Add-EtwTraceProvider

Add-History
Add-InitiatorldToMaskingSet
Add-JobTrigger

Add-KdsRootKey
Add-LocalGrouphember
Add-Member

Add-MpPreference
Add-MpPreferance
Add-NetEventNetworkAdapter
Add-NeteventPacketCaptureProvider
Add-NeteventProvider
Add-NetEventVFpProvider
Add-NetEventVmhetworkAdapter
Add-Netevent)

Ln 12 Col 19 100%

We have a PowerShell function called MyFunction in this code. Within the function, we
declare a local variable named $localVariable and set its value to "Hello, local scope!" Then,
within the function, we use the Write-Host cmdlet to display the value of $localVariable,
which returns "Hello, local scope!" as expected.
When we try to use Write-Host outside of the function to display the value of $localVariable,
it throws an error. Because the variable $localVariable is only accessible within the scope of
the MyFunction function, this is the case. It does not exist outside of the function, and
attempting to access it from outside causes an error. This exemplifies the concept of
PowerShell's local scope, in which variables declared within a function are only accessible
within that function and not in the global scope.

Script Scope

Variables that are accessible throughout the script file are referred to as script scope.
Variables defined at the script scope are accessible from any script block or function.

function MyFunction {

SscriptVariable = "Hello, script scope!”

Write-Host SscriptVariable

www.alexandrumarin.com

48

http://www.alexandrumarin.com

MyFunction # Output: Hello, script scope!
Write-Host SscriptVariable # Output: Hello, script scope!

B Windows PowerShell ISE
File Edit Wiew Iools Debug Add-ons Help

0@ el 4 B > [funsaipts) | D Bl 8 5oolm@.

| Untitled1.ps1"(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1"(Recovered) copyfolderps Untitleds,ps"(Recovered)
| Untitled5.ps1*(Recovered) Untitled6,ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1
| Untitled10.ps1*(Recovered) Untitled11.ps1*(Recovered) AppFinder.psi Untitled13.ps1*(Recovered) Untitled14,ps1*

1 S$scriptvariable = "hello, script scope!”

2

3 ofunction MyFunction {

4 Write-Host $scriptVariable

5 |3

6

7 MyFunction # Output: Hello, script scope!

& Write-Host $scriptvariable

E

Write-Host $scriptVariable

MyFunction # Output: Hello, script scope!
Write-Host $scriptVariable

Hello, script
Hello, script

PS Cz\Us

Commands X

Modules: | All

Mame:

a

Add-AppProvisionedsharedPackageContainer

AAdd-AppSharedPackageContainer
Add-AppvClientConnectionGroup
AAdd-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-AppxVolume
AAdd-BCDataCacheExtension
Add-BitLockerKeyProtector
Ada-BitsFile
Add-CertificateEnrolimentPolicyServer
Add-Computer

Add-Content
AAdd-DnsClientDonServerAddress
Add-DnsClientNrptRule
Add-DieClusterTMMapping
Add-EtwTraceProvider
Add-Histery
Add-InitiatoridToMaskingSet
Add-JobTrigger

Add-KdsRootKey
Add-LocalGrouphember
AAdd-Member

AAdd-MpPreference
Add-MpPreference
AAdd-NeteventNetworkadapter
Add-NetEventPacketCaptureProvider
Add-NetEventProvider
Add-NetEventVFPProvider
Add-NetEventVmMNetworkAdapter
Add-NetEventVmSwitch

Ln 13 Col 19

100%

We have a PowerShell script in this code that begins by defining a script-level variable named

SscriptVariable and assigning it the value "Hello, script scope!"

Next, we create a function called MyFunction and use Write-Host within it to display the

value of the SscriptVariable.

When we invoke MyFunction, it prints "Hello, script scope!" to the console, confirming that

the function has access to the script-level variable.

Outside of the function, we use Write-Host to display the value of SscriptVariable, as well as

the expected "Hello, script scope!"

This demonstrates that script-level variables can be accessed both within functions and in

the script's global scope.

Global Scope

Variables with global scope can be accessed from anywhere in your PowerShell session,
including multiple script files. Global variables are retained for the duration of the PowerShell

session.

Sglobal:globalVariable = "Hello, global scope!”

www.alexandrumarin.com

49

http://www.alexandrumarin.com

function MyFunction {
Write-Host Sglobal:globalVariable

MyFunction # Output: Hello, global scope!
Write-Host SglobalVariable # Output: Hello, global scope!

EJ Administrator: Windows PowerShell ISE = O X
File Edit View Tools Debug Add-ons Help

0@ 3 & O x| 9) B % |8 oo mE.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘ =
| Untitled8.ps1(Recovered) Untitled9.ps1*(Recovered) Untitled10.ps1*(Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recavered) Untitled13ps1® X |

1 $global:globalVariable = "Hello, global scope!™

—function MyFunction {
Write-Host $global:globalvariable

}

MyFunction # Output: Hello, global scope!

2
3
4
5
6
8 Write-Host $globalvariable # Output: Helle, global scope!
9

P5 C:\WINDOWS\system32> $global:globalvariable = "Hello, global scope!™

function MyFunction {
Write-Host $global:globalVariable

1
¥

MyFunction # Output: Hello, global scope!
Write-Host $globalVariable # Output: Hello, global scope!

Hello, global scope!
Hello, global scope!

PS C:\WINDOWSsystem32=

Ln9 Col 1 100% |

In this code, we start by creating a global-level variable named Sglobal:globalVariable and set
its value to "Hello, global scope!".

Sglobal: is a scope modifier in PowerShell that allows you to access or define variables in the
global scope from within a function or script block. Variables created within a function are by
default restricted to the scope of that function, meaning they are not accessible outside of it.
Sglobal:, on the other hand, allows you to explicitly reference or create variables in the global
scope, making them accessible from anywhere in the script.

When you use Sglobal: to access a variable, PowerShell searches the global scope for the
variable, even if it is defined within a function or script block. If the variable does not exist in
the global scope, PowerShell will add it.

www.alexandrumarin.com 50

http://www.alexandrumarin.com

Following that, we define MyFunction, which uses Write-Host to display the value of the
global variable Sglobal:globalVariable.

When we invoke MyFunction, it prints "Hello, global scope!" to the console, indicating that the
function has access to the global-level variable.

Outside of the function, we use Write-Host to display the value of SglobalVariable, which also

produces the expected "Hello, global scope!" This demonstrates that global-level variables
are accessible both within functions and in the script's global scope.

Private Scope

Private scope is only available within a module. Private scope variables cannot be accessed
or modified outside of the module.

Module file: MyModule.psm1
Sprivate:privateVariable = "Hello, private scope!"

function MyFunction {
Write-Host Sprivate:privateVariable

EJ Administrator: Windows PowerShell ISE = O X
File Edit View Tools Debug Add-ons Help

0@ H & & 8 > uewe)) =8 |Eoo®m.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*{Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*{Recovered) Untitled7.ps1*(Recovered) ‘
A

| Untitleds.ps17(Recovered) Untitled9.ps17(Recovered) Untitled10,ps1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1"(Recovered) Untitled3,ps1" X |

1 # Module file: MyModule. psml

2 $private:privateVariable = "Helle, private scope!”

3

4 =function MyFunction {

5 Write-Host Sprivate:privateVariable

6 |}

PS5 C:\WINDOWS\system32> # Module file: MyModule.psml
$private:privateVariable = "Hello, private scope!™

function MyFunction {

Write-Host $private:privateVariable
1
¥

PS C:\WINDOWSsystem32=

In9 Col 25 100% J

www.alexandrumarin.com 51

http://www.alexandrumarin.com

We can see in the code that there is a PowerShell module file named "MyModule.psm1." A
variable defined as Sprivate:privateVariable within the module indicates that it is a private
variable that can only be accessed within the module itself.

The Sprivate: scope modifier in PowerShell is used to define private variables within a
module. When you declare a variable with Sprivate;, it is only accessible within the scope of
the module in which it is defined. This means that the variable cannot be accessed or
modified from outside the module, as well as from other scripts or functions.

Using Sprivate: ensures that the variable is contained within the module and does not
interfere with other parts of the PowerShell session or modules. It aids in the avoidance of
unintentional variable name conflicts and improves the module's maintainability and
reliability.

"Hello, private scope!" is assigned to the variable Sprivate:privateVariable. This means that
its value is the string "Hello, private scope!"

The module then defines a function called MyFunction. This function is intended to use
Write-Host to write the value of the private variable, Sprivate:privateVariable, to the console.

Dynamic Scope

Dynamic scope is a feature introduced in PowerShell 7 that allows variables to be accessed
dynamically based on the caller's scope.

SdynamicVariable = "Hello, dynamic scope!"

function MyFunction {
Write-Host SdynamicVariable

MyFunction # Output: Hello, dynamic scope!

www.alexandrumarin.com 52

http://www.alexandrumarin.com

EJ Administrator: Windows PowerShell ISE = O X
File Edit View Tools Debug Add-ons Help

O @ d 4 Bl | Runscript (5) | D > R = i - - O

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘ =
| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps1*(Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) Untitled13.ps1* X ‘

1 fdynamicvariable = "Hello, dynamic scope!™
2

3 =function MyFunction {

4 Write-Host S$dynamicvariable

5003

6

8

MyFunction # Output: Hello, dynamic scope!

P5 C:\WINDOWS\system32= $dynamicvariable = "Hello, dynamic scope!”

function MyFunction {
Write-Host $dynamicVariable

1
¥

MyFunction # Output: Hello, dynamic scope!

Hello, dynamic scope!

PS C:\WINDOWS\system32>

Ln 11 Col 25 100%

In the code above, we create a variable called SdynamicVariable and set its value to "Hello,
dynamic scope!”

Then we declare the function MyFunction. We use the Write-Host cmdlet within this function
to display the value of the SdynamicVariable to the console.

When we use MyFunction to call MyFunction, the console displays the value of
SdynamicVariable, which is "Hello, dynamic scope!"

The variable SdynamicVariable is in the dynamic scope in this example, which means it is
accessible within functions and scripts called within the same scope where it was defined.
Because MyFunction is called within the same script that defines SdynamicVariable, it can
access and display the value of SdynamicVariable. However, if we call MyFunction from
another script or function, it will be unable to access the SdynamicVariable because the
scope is different.

Automatic Variable Scope

PowerShell also provides a set of automatic variables with predefined scopes, such as
SPSItem, SPSScriptRoot, and SPSCommandPath. These variables have specific purposes
and their scopes are determined by the context in which they are used.

www.alexandrumarin.com 53

http://www.alexandrumarin.com

EJ Administrator: Windows PowerShell ISE = O X
File Edit View Tools Debug Add-ons Help

O & B & B > |RunScipt(Fs) | B = | B | Bloo|®&@.
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
| Untitled8.ps1*(Recovered) Untitled9.ps1*{Recovered) Untitled10.ps1*(Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testps X ‘

1 write-host $PSScriptRoot

2
3 write-host $PSCommandPath

P5 C:\WINDOWS\system32> C:\Users\User'Desktop\test.psl
Jsers\User\Desktop
Isers\UserDesktop\test.psl

P5 C:\WINDOWS\system32>

Ln5 Col 25 100%

One example of an automatic variable is the $PSVersionTable variable, which holds
information about the current PowerShell version. It can be accessed from anywhere within
a script or function without the need for any special declaration. For instance:

Write-Host "PowerShell Version: $($PSVersionTable.PSVersion)"

Another commonly used automatic variable is $PSCmdlet, which represents the currently
running cmdlet. It can be used within advanced functions or script cmdlets to access
properties of the cmdlet that is executing. For example:

function Get-SomeData {
$cmdletName = $PSCmdlet.MyInvocation.MyCommand.Name
Write-Host "Running cmdlet: $cmdletName"

Automatic variables are essential for various PowerShell functionalities, and they are
automatically created and populated based on the context of the script or function. However,
it is important to be aware of their scope and potential side effects. For example, some
automatic variables are read-only and should not be modified, such as $null or $true.

www.alexandrumarin.com 54

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_powershell_editions?view=powershell-7.3
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscmdlet?view=powershellsdk-7.3.0
http://www.alexandrumarin.com

Operators and Expressions

PowerShell includes a plethora of operators and expressions that enable you to perform a
variety of operations, comparisons, and calculations in your scripts. Understanding how to
use these operators and construct expressions is critical for PowerShell scripting success.
In this chapter, we will look at PowerShell operators, their categories, and expression
examples to show how they can be used.

Arithmetic Operators

Arithmetic operators enable you to perform mathematical calculations on numerical values.
Here are the commonly used arithmetic operators in PowerShell:

Addition (+)

The addition operator allows you to add two or more numeric values together.

Ssum=5+3

www.alexandrumarin.com 55

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arithmetic_operators?view=powershell-7.3
http://www.alexandrumarin.com

EJ Administrator: Windows PowerShell ISE = O X
File Edit View Tools Debug Add-ons Help

0 & H & g » b B|= | 8| Boo|s .
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
| Untitled8.ps1*(Recovered) Untitled9.ps1*{Recovered) Untitled10.ps1*(Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testps X ‘ |

1 Ssum =5 + 3
2 write-host fsum

system32> C:\Users\User\Desktop\test.psl

ystem32s

Lnd Col25 100% J

Subtraction (-)

The subtraction operator subtracts one numeric value from another.

Sdifference =10-3

www.alexandrumarin.com 56

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View

0= d

Tools Debug Add-

g »

- (%]

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*{Recovered) Untitled10.ps1*(Recovered)
1 Sdifference = 10 - 3
2 write-host $difference

P5 C:\WINDOWS\system32> C:\Users\User'Desktop\test.psl
7

PS C:\WINDOWSsystem32=

,;

= g B .
Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered)

findapplicationuninstallkeys.ps1

Ln4 Col 25

Untitled12.ps1*(Recovered)

Untitled7.ps1*(Recovered)

testps

‘ A

-

100%

Multiplication (*)

The multiplication operator multiplies two or more numeric values.

Sproduct=4*5

www.alexandrumarin.com

57

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE

= O X
File Edit View Tools Debug Add-ons Help
N & B 4 B » [m % | & B o3 B OB .
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘

|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘
1 Sproduct = 4 = 5

2 write-host fproduct

\WINDOWS\system32> $product = 4 * 5
write-host $product
20

P5 C:\WINDOWS\system32>

Ln5 Col 25 100%

Division (/)

The division operator divides one numeric value by another.

Squotient=20/5

www.alexandrumarin.com

58

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE

= O X
Eile Edit View Tools Debug Add-
__-,H.:' B » W % & B B &E.
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered)
1 $quotient = 20 / 5

findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘
2 write-host fquotient

\WINDOWSh\system32= $quotient = 20
write-host $quotient
4

P5 C:\WINDOWS\system32>

Ln5 Col 25 100%

Modulo (%)

The modulo operator returns the remainder after division.

Sremainder =11 % 3

www.alexandrumarin.com

59

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= H 4 B 3 | RunScript(F5) | P = | B | Bloo|®&@.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘

|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

1 Sremainder = 11 % 3
2 write-host $remainder

P5 C:\WINDOWS\system32> $remainder = 11 % 3
write-host $remainder
2

P5 C:\WINDOWS\system32>

Ln5 Col 25 100%

Assignment Operators

Variables are assigned values using assignment operators. They enable you to simplify
variable assignment while also performing calculations.

Assignment (=)

The assignment operator assigns a value to a variable.

Sname = "John"

Compound Assignment Operators (+=, -=, *=, /=, %=)

These assignment operators provide a convenient way to modify variables and perform
mathematical operations on them in a single step. For example, the += operator can be used

www.alexandrumarin.com 60

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_assignment_operators?view=powershell-7.3
http://www.alexandrumarin.com

to append values to an array, and the -= operator can be used to subtract a value from a

variable.

Snumber =10

Snumber += 5 # Adds 5 to the existing value of Snumber
Snumber -= 3 # Subtracts 3 from the updated value of Snumber
Snumber *= 2 # Multiplies the updated value of Snumber by 2
Snumber /= 4 # Divides the updated value of Snumber by 4

Snumber++ # Increments the value of Snumber by 1
Snumber-- # Decrements the value of Snumber by 1

Write-Host "Final value of number: Snumber"

Snumber %= 2 # Computes the remainder of dividing the updated value of Snumber by 2

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help

0@ B & & B *roswe) » |8 Boo|ina.
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered)

| Untitled8.ps 1*(Recovered) Untitled9.ps1*(Recovered) Untitled10.ps1*(Recovered) findapplicationuninstallkeys ps1 Untitled12.ps1*(Recovered)

1 Snumber = 10

2 Snumber += 3 # Adds 5 to the existing value of $number

3 Snumber -= 3 # Subtracts 3 from the updated value of Snumber
4 Snumber *= 2 # Multiplies the updated value of $number by 2
5 Snumber /= 4 # Divides the updated walue of Snumber by 4
: .
8

Snumbe = 2 # Computes the remainder of dividing the updated value of Snumber by 2
7 Snumber++ # Increments the value of $number by 1
Snumber—— # Decrements the value of $number by 1
9
10 Write-Host "Final value of number: Snumber"
11

P5 C:\WINDOWS\system32> $number = 10

$number # Adds 5 to the existing value of $number

$number # Subtracts 3 from the updated value of $number

$number # Multiplies the updated value of $number by 2

$number # Divides the updated value of $number by 4

$number %= 2 # Computes the remainder of dividing the updated value of $number by 2
$number++ # Increments the value of $number by 1

$number-- # Decrements the value of $number by 1

Write-Host "Final value of number: $number”

Final value of number: 0

P5 C:\WINDOWS\system32>

Untitled7.ps1*(Recovered) ‘

testpsi Untitled1d.ps1* X ‘

Ln 14 Col 25 100%

Comparison Operators

PowerShell includes several comparison operators for comparing values and performing
conditional operations. The following are the most commonly used comparison operators in

PowerShell:

e eq (Equal to): Checks if two values are equal.

www.alexandrumarin.com

61

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators?view=powershell-7.3
http://www.alexandrumarin.com

Snumber =5
Sresult = Snumber -eq 5
Write-Host Sresult # Output: True

e ne (Not equal to): Checks if two values are not equal.

Snumber = 5
Sresult = Snumber -ne 3
Write-Host Sresult # Output: True

e gt (Greater than): Checks if the left value is greater than the right value.

Snumber =5
Sresult = Snumber -gt 3
Write-Host Sresult # Output: True

e It (Less than): Checks if the left value is less than the right value.

Snumber = 5
Sresult = Snumber -It 10
Write-Host Sresult # Output: True

e ge (Greater than or equal to): Checks if the left value is greater than or equal to the
right value.

Snumber =5
Sresult = Snumber -ge 5
Write-Host Sresult # Output: True

e le (Less than or equal to): Checks if the left value is less than or equal to the right
value.

Snumber =5
Sresult = Snumber -le 8
Write-Host Sresult # Output: True

e like (Wildcard matching): Performs a wildcard pattern match on a string.

www.alexandrumarin.com 62

http://www.alexandrumarin.com

Sname = "John"
Sresult = Sname -like "J*"
Write-Host Sresult # Output: True

e notlike (Negated wildcard matching): Checks if a string does not match a specified
wildcard pattern.

Sname = "John"
Sresult = Sname -notlike "M*"
Write-Host Sresult # Output: True

e match (Regular expression matching): Performs a regular expression match on a
string.

Stext = "The quick brown fox jumps over the lazy dog."
if (Stext -match "brown") {

Write-Host "Match found!"
}else {

Write-Host "No match found."

e notmatch (Negated regular expression matching): Checks if a string does not match
a specified regular expression pattern.

Stext = "The quick brown fox jumps over the lazy dog."
if (Stext -notmatch "black") {

Write-Host "No match found!"
}else {

Write-Host "Match found."

}

e contains (Contains): Checks if an array contains a specific value.

Snumbers=1,2,3,4,5
if (Snumbers -contains 3) {

Write-Host "The number 3 is present in the array."
}else {

Write-Host "The number 3 is not present in the array."

e notcontains (Not contains): Checks if an array does not contain a specific value.

www.alexandrumarin.com 63

http://www.alexandrumarin.com

Sfruits = "apple", "banana’, "orange"
if ($fruits -notcontains "pear") {

Write-Host "The fruit 'pear’ is not present in the array.’
}else {

Write-Host "The fruit 'pear' is present in the array."

}

e in (In): Checks if a value is present in a collection.

Sfruits = "apple", "banana’, "orange"
if ("banana” -in $fruits) {

Write-Host "The fruit 'banana' is present in the array."
}else {

Write-Host "The fruit 'banana'’ is not present in the array."

e notin (Not in): Checks if a value is not present in a collection.

Sfruits = "apple", "banana’, "orange"
if ("pear" -notin Sfruits) {

Write-Host "The fruit 'pear’ is not present in the array."
}else {

Write-Host "The fruit 'pear’ is present in the array."

e is (Type comparison): Checks if an object is of a specific type.

Svalue = "Hello, World!"
if (Svalue -is [string]) {

Write-Host "The variable is of type 'string'."
}else {

Write-Host "The variable is not of type 'string'."

e isnot (Negated type comparison): Checks if an object is not of a specific type.

Svalue = "Hello, World!"
if (Svalue -isnot [int]) {

Write-Host "The variable is not of type 'int."
}else {

www.alexandrumarin.com 64

http://www.alexandrumarin.com

Write-Host "The variable is of type 'int".

These operators can be used in conditional statements, filtering data, and comparing values
in PowerShell scripts and commands.

It's important to note that comparison operators may have different behaviors based on
the data types being compared. For example, when comparing strings, -eq and -ne perform
case-insensitive comparisons by default. However, you can use the -ceq and -cne
operators for case-sensitive string comparisons.

Logical Operators

There are three logical operators in PowerShell: -and, -or, and -not. You can use these
operators to perform logical operations on conditions or values. Here's a brief explanation
and illustration for each:

AND Operator

The -and operator performs a logical AND operation between two conditions. It returns Strue
if both conditions are true, and S$false otherwise.

Sa=5
Sb=10

if (Sa-gt 0 -and $b -It 15) {

Write-Host "Both conditions are true."
}else {

Write-Host "At least one condition is false.

www.alexandrumarin.com 65

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logical_operators?view=powershell-7.3
http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE

— O X

File Edit View Tools Debug Add-ons Help
O & B & B 3 | RunScript(F5) | P = | B | Bloo|®&@.
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

1 fa=>5

2 b = 10

3

4 =if (%a -ot 0 -and Sb -1t 15) {

5 Write-Host "Both conditions are true.™

6 2} else

7 Write-Host "At Teast one condition is false.”

8 [}

9

P5 C:\WINDOWS\system32> $a = 5
sh =

10

if ($a —gt 0 -and $b -1t 15) {
Write-Host "Both conditions are true.”
} else {
Write-Host "At least one condition is false.”

1
¥

Both conditions are true.

PS C:\WINDOWS\system32:»

Ln 12 Col 25 100%

OR Operator

The -or operator performs a logical OR operation between two conditions. It returns Strue if
at least one of the conditions is true, and $false only if both conditions are false.

Sa=5
Sb=10

if (Sa-gt 0 -or $b -gt 15) {

Write-Host "At least one condition is true."
}else {

Write-Host "Both conditions are false."

www.alexandrumarin.com 66

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help

0B 4 & 0 N usamm]? B

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered)
| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered)
5a =5
b = 10

=if ($a -gt 0 -or $b -gt 15) {

Write-Host "At least one condition is true.”
=} else

Write-Host "Both conditions are false.”

}

RN AT TR

P5 C:\WINDOWS\system32> $a = 5
sh =

10

if ($a -gt 0 -or $b —gt 15) {

Write-Host "At least one condition is true.”
} else {

Write-Host "Both conditions are false.”

1
¥

At least one condition is true.

PS C:\WINDOWS\system32:»

Boolsa.

Untitled4.ps1*(Recovered)

findapplicationuninstallkeys.ps1

Untitled.ps1*(Recovered)
Untitled12.ps1*(Recovered)

Untitled7.ps1*(Recovered)

testpsi

Ln 12 Col 25

‘ A

Untitled14,ps1* X ‘

100%

NOT Operator

The -not operator performs a logical NOT operation on a condition. It negates the result of
the condition, returning Strue if the condition is false, and $false if the condition is true.

Sa=5

if (-not Sa -eq 10) {

Write-Host "The condition is false."
}else {

Write-Host "The condition is true."

www.alexandrumarin.com

67

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help

O & B & B 3 | RunScript(F5) | P = | B | Bloo|®&@.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1
1 fa=>5

2

3 =1if (-not $a -eq 10) {

4 Write-Host "The condition is false.”

5 =} else {

6 Write-Host "The condition is true.”

8

}

P5 C:\WINDOWS\system32> $a = 5

if (-not $a -eq 10) {

Write-Host "The condition is false."
} else {

Write-Host "The condition is true.”
H

The condition is true.

PS C:\WINDOWS\system32>

Untitled.ps1*(Recovered)
Untitled12.ps1*(Recovered)

Untitled7.ps1*(Recovered)

testpsi

Ln 11 Col 25

‘ A

Untitled14,ps1* X ‘

100%

String Operators

There are several string operators in PowerShell that allow you to perform various operations

on strings. Here is a list of PowerShell string operators:

Concatenation Operator (+)

The concatenation operator + is used to concatenate (join) two strings together.

Sstr1 = "Hello"
Sstr2 = "World"
Sresult = $str1 + " " + $str2

Write-Host Sresult # Output: Hello World

www.alexandrumarin.com

68

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help

DB H 4 5 8 Muwmod 38| | 8|Ho0ind.
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

§strl "Hello'

gstrz = "world"”

Sresult = $strl + " " + Sstr2

T

Write-Host $result # Output: Hello World

tem32> $strl = "Hello"
$result = §strl + " " + §str2
Write-Host $result # Output: Hello World
Hello World

P5 C:\WIND

Ln9 Col 25 100%

JOIN Operator

The -join operator is used to join an array of strings into a single string, using a specified
separator.

Swords = "Hello", "World", ""
Sresult = Swords -join " "

Write-Host Sresult # Output: Hello World !

www.alexandrumarin.com 69

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= H 4 B 3 | RunScript(F5) | P = | B | Bloo|®&@.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

1 Swords = "Hello", "world", "1"
fresult = Swords -join " "

2
3
4 Write-Host %result # Output: Hello World !
5

system32> $words = "Hello™, "wWorld", "1
fresult = § -join " "

Write-Host $result # Output: Hello World !

Hello World !

PS C:\WINDOWSsystem32=

Untitled.ps1*(Recovered)
Untitled12.ps1*(Recovered)

Untitled7.ps1*(Recovered)

testpsi

Ln8 Col 25

‘ A

Untitled14,ps1* X ‘

100%

Substring Operator

The substring operator is used to extract a portion of a string based on the specified start

index and length.

Sstr = "Hello World"
Sresult = $str.Substring(0, 5)

Write-Host Sresult # Output: Hello

www.alexandrumarin.com

70

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
H & g » b = | B

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered)

1 Sstr = "Hello World"
Sresult = $str.Substring(0, 3)

2
3
4 Write-Host $result # Output: Hello
5

P5 C:\WINDOWS\system32> $str = "Hello World"
$result = $str.Substring(0, 5)

Write-Host $result # Output: Hello
Hello

PS C:\WINDOWSsystem32=

Boolsa.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered)

Untitled4.ps1*(Recovered)

findapplicationuninstallkeys.ps1

Untitled.ps1*(Recovered)
Untitled12.ps1*(Recovered)

Untitled7.ps1*(Recovered)

testpsi

Ln8 Col 25

‘ A

Untitled14,ps1* X ‘

100%

Replace Operator

The -replace operator is used to replace one or more occurrences of a pattern in a string with

a specified value.

Sstr = "Hello World"
Sresult = Sstr -replace "World", "Universe"

Write-Host Sresult # Output: Hello Universe

www.alexandrumarin.com

71

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= H & B » |9 b ® | B |EOO0 & @E.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

1 Sstr = "Hello World"
Sresult = $str -replace "World™, "Universe”

2
3
4 Write-Host $result # Output: Hello Universe
5

P5 C:\WINDOWS\system32> $str = "Hello World"
$result = $str -replace "wWorld”, "Universe”

Write-Host $result # Output: Hello Universe

Hello Universe

PS C:\WINDOWSsystem32=

Completed

Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered)

Untitled12.ps1*(Recovered) testpsi

In5 Col 1

‘ A

Untitled14,ps1* X ‘

100%

LIKE Operator

The -like operator is used for pattern matching using wildcard characters (* and ?).

Sstr = "Hello World"

if (Sstr -like "*World*") {
Write-Host "String contains 'World'."
}else {
Write-Host "String does not contain 'World'."

www.alexandrumarin.com

72

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= H 4 B 3 | RunScript(F5) | P = | B | Bloo|®&@.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

1 Sstr = "Hello World"

2

3 Aif ($str -Tike "=world=") {

4 Write-Host "String contains "World'.”

5 =} else {

[Write-Host "String does not contain "World'."
73

8

P5 C:\WINDOWS\system32> $str = "Hello World"

if ($str -Tike "*World=") {

Write-Host "String contains 'World'."™
} else {

Write-Host "String does not contain “World'.™
H

5tring contains "World'.

PS C:\WINDOWS\system32>

Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered)

‘ A

Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

Ln 11 Col 25

100%

MATCH Operator

The -match operator is used for pattern matching using regular expressions.

Sstr = "Hello World"

if (Sstr-match "W[a-z]+Id") {

Write-Host "String matches the pattern.
}else {

Write-Host "String does not match the pattern.”

www.alexandrumarin.com

73

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE

Eile Edit View Tools Debug Add-
O & 3 B »

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered)

- (%] ,; 0o O B OH
Untitled3.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered)

1 Sstr = "Hello World"

5 =if ($str -match "w[a-z]+1d™) {

4 Write-Host "String matches the pattern.”

5 =} else {

[Write-Host "String does not match the pattern.”
73

8

P5 C:\WINDOWS\system32= $str "Hello World"”

if ($str -match "W[a-z]+1d™) {

Write-Host "String matches the pattern.”
} else {

Write-Host "String does not match the pattern.™
H

5tring matches the pattern.

PS C:\WINDOWS\system32:-

Untitled4.ps1*(Recovered)

findapplicationuninstallkeys.ps1

— O X
Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

Ln 11 Col 25 100%

These string operators in PowerShell allow you to manipulate, search, and replace string

values based on specific conditions or patterns.

www.alexandrumarin.com

74

http://www.alexandrumarin.com

Control Flow Statements

Control flow statements are essential programming constructs that allow you to control the
execution flow of your code based on certain conditions. Control flow statements in
PowerShell allow you to make decisions, loop over a set of instructions, and change the flow
of your script's execution.

Let's look at the PowerShell control flow statements.

If statement

The If statement allows you to execute a block of code based on a specified condition. It can
also be combined with Elself and Else statements to handle multiple conditions.

Snumber = 10
if (Snumber -gt 0) {

Write-Host "The number is positive."
} elseif (Snumber -It 0) {

Write-Host "The number is negative."
}else {

Write-Host "The number is zero."

www.alexandrumarin.com 75

https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/06-flow-control?view=powershell-7.3
http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= B 4 Bl > | RunScript(F5) | D = | B

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered)

Boolsa.

Untitled3.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

Snumber = 10
=if ($number -gt 0) {

Write-Host "The number is positive.”
=1} elseif (Snumber -1t 0) {

Write-Host "The number is negative.”
=} else [

Write-Host "The number is zero.™

}

RN AT TR

P5 C:\WINDOWS\system32> $number = 10
if ($number {

Write-Host "The number is positive.™
} elseif ($number -1t 0) {

¥
Write-Host "The number is negative.™
} else {
Write-Host "The number is zero.™
1
¥

The number is positive.

PS C:\WINDOWS\system32:»

Untitled4.ps1*(Recovered)

— O X
Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

Ln 12 Col 25 100%

We have a variable called Snumber with the value 10 in this code. To check the value of
Snumber, we use an if statement. If Snumber is greater than zero, the script will display the
message "The number is positive." If Snumber is less than zero, it returns "The number is
negative." If Snumber is exactly zero, the script will print "The number is zero." When the
number is negative, the elseif statement is used, and when it is zero, the else statement is
used. This code assists in determining the sign of the variable Snumber and returns the

appropriate output based on the condition met.

Switch statement

The Switch statement is used to evaluate a variable or expression against a series of cases.
It allows you to perform different actions based on the matched case.

Sfruit = "apple"
switch (Sfruit) {
"apple” {
Write-Host "It's an apple.”
}
"banana" {
Write-Host "It's a banana.'

}

www.alexandrumarin.com

76

http://www.alexandrumarin.com

default {
Write-Host "It's a different fruit."

}

Q Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help

Ll & H & B » Run Script (F5) [-~ = B 0 Cl i i > -
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*{Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps1*(Recovered) findapplicationuninstallkeys.ps1
1 §fruit = "apple”

2 Hswitch (3fruit) {

3= “apple” {

4 Write-Host "It's an apple.”
5

6 [banana" {

7 Write-Host "It's a banana."
8

9 = default {

10 Write-Host "It's a different fruit.”
11

12 [}

13

PS5 C:\WINDOWS\system32> $fruit = "apple”
switch (3fruit) {
“apple” {
Write-Host "It's an apple.”
1
"banana" {
Write-Host "It's a banana.™

3
¥
default {

Write-Host "It's a different fruit.”

It's an apple.

PS C:\WINDOWS\system32>

Untitled.ps1*{Recovered)

Untitled12.ps1*(Recovered)

Untitled7.ps1*(Recovered)

testpsl

Ln16 Col 25

‘ A

Untitled14,ps1® X ‘

100%

We have a variable Sfruit with the value "apple". To check the value of $fruit, we use a switch

statement. If Sfruit is set to "apple,” the script will output "It's an apple.” If the value is
"banana," the output will be "It's a banana." If none of the specified cases match the value of
Sfruit, the script will execute the default block and output "It's a different fruit." The switch

statement allows you to handle multiple conditional cases based on the value of a variable in

an efficient manner.

For loop

The For loop allows you to iterate over a set of values or elements for a specified number of

times.

for (Si=1; Si-le 5; Si++) {
Write-Host "lteration: Si"

www.alexandrumarin.com

7

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= H 4 B > |Runscriptrs) | D

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered)

Boo|m

Untitled4.ps1*(Recovered)

- (%]

Untitled3.ps1*(Recovered)

1 -

Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered)

1 GEfor (51 =1; 51 -le 5; $i++) {
2 Write-Host "Iteration: §i"
301}

4

P5 C:\WINDOWS\system32> for ($i = 1; %7 -le 5; $i++) {

Write-Host "Iteration: $i"
1
i

: 1

Iteration: 5

PS C:\WINDOWS\system32>

Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘

Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

Ln11 Col 25 100% J

In the above code, we have a for loop that assigns the value 1 to the variable Si. The loop will
be repeated until | is less than or equal to 5. The script will output "Iteration: " followed by the
current value of | after each loop iteration. The value of | will be increased by one after each
iteration. The loop will run five times, producing the output shown in the screenshot above.

While loop

The While loop executes a block of code as long as a specified condition remains true.

Scounter =0

while (Scounter -It 5) {
Write-Host "Counter: Scounter”
Scounter++

www.alexandrumarin.com

78

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= H 4 B > |RunScipt(Fs) | B = | B | Bloo|®&@.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

1 Scounter = 0

2 Ewhile (fcounter -1t 3) {

3 Write-Host "Counter: $counter”
4 Scounter++

5003

6

P5 C:\WINDOWS\system32> $counter = O
while ($counter -1t 5) {
Write-Host “"Counter: $counter”
$counter++
¥

Counter:
Counter:
Counter:
Counter:
Counter:

PS C:\WINDOWSsystem32=

Untitled.ps1*(Recovered)
Untitled12.ps1*(Recovered)

Untitled7.ps1*(Recovered)

testpsi

Ln 13 Col 25

‘ A

Untitled14,ps1* X ‘

100%

In this code, we have a while loop that sets the variable Scounter to zero. The loop will

continue indefinitely if Scounter is less than 5. The script will output "Counter: " followed by
the current value of Scounter in each loop iteration. The value of Scounter will be increased
by one after each iteration. The loop will run five times, producing the output shown above.

Do-While loop

The Do-While loop is similar to the While loop, but it executes the code block at least once

before checking the condition.

Scounter =0

do {
Write-Host "Counter: Scounter”
Scounter++

} while (Scounter -It 5)

www.alexandrumarin.com

79

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help

0 & B 4 g » b B|= | 8| Boo|s .
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered)
|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘
1 Scounter = 0
2 Hdo {
3 Write-Host "Counter: $counter”
4 Scounter++
5 } while (Scounter -1t 5)
6

P5 C:\WINDOWS\system32> $counter = O
do {

i
Write-Host “"Counter: $counter”
$counter++

} while (Scounter -1t 5)

Counter:
Counter:
Counter:
Counter:
Counter:

PS C:\WINDOWSsystem32=

Ln 13 Col 25 100%

In this case, we have a do-while loop that sets the variable Scounter to 0. Regardless of the
condition, the loop will run at least once. The script will output "Counter: " followed by the
current value of Scounter in each loop iteration. The value of Scounter will be increased by
one after each iteration. The loop will continue indefinitely if Scounter is less than 5. The
result will be as shown in the screenshot above.

Foreach loop

The Foreach loop iterates over each element in a collection or array.

Sfruits = "apple", "banana’, "orange"
foreach (Sfruit in Sfruits) {
Write-Host "Fruit: Sfruit”

www.alexandrumarin.com 80

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= H 4 B 3 | RunScript(F5) | P = | B | Bloo|®&@.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

1 §fruits = "apple", "banana”, "orange"
2 —foreach (Sfruit in $fruits) {
3 Write-Host "Fruit: $fruit”
4 |3
5

P5 C:\WINDOWS\system32> §fruits = "apple™, "banana™, "orange”
foreach ($fruit in $fruits) {
Write-Host "Fruit: $fruit”

1
¥

Fruit: apple
Fruit: banana
Fruit: orange

P5 C:\WINDOWS\system32>

Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered)

Untitled12.ps1*(Recovered) testpsi

Ln 10 Col 25

‘ A

Untitled14,ps1* X ‘

100%

Break statement

The Break statement is used to exit or terminate a loop or switch statement.

foreach (Snumber in 1..10) {
if (Snumber -eq 5) {
Write-Host "Breaking the loop."
break
}

Write-Host "Number: Shumber"

www.alexandrumarin.com

81

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help

O & B & B > |RunScipt(Fs) | B = | B | Bloo|®&@.
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

=lforeach (Snumber in 1..10) {

= if ($number -eg 53) {
Write-Host "Breaking the loop.”
break

Write-Host "Number: $number™

}

[N R ST

P5 C:\WINDOWS\system32> foreach ($number in 1..10) {
if ($number -eq 5)
Write-Host "Breaking the loop."
break

¥
Write-Host "Number: $number™

¥

Number: 1
Number: 2
Number: 3
Number: 4
Ereaking the Toop.

PS C:\WINDOWS\system32>

Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered)

Untitled12.ps1*(Recovered) testpsi

Ln 15 Col 25

‘ A

Untitled14,ps1* X ‘

100%

| e

A foreach loop iterates through the numbers 1 through 10. It checks whether the current

value of Snumber is equal to 5 for each iteration. If the condition is met, the script will display

"Breaking the loop" and use the break keyword to exit the loop early. If not, it will display
"Number: " followed by the current value of Snumber. When the loop reaches the value 5, it

will come to an end.

Continue statement

The Continue statement is used to skip the remaining code in a loop iteration and move to

the next iteration.

foreach (Snumber in 1..5) {
if (Snumber -eq 3) {
Write-Host "Skipping number 3."
continue

}

Write-Host "Number: Snumber"

www.alexandrumarin.com

82

http://www.alexandrumarin.com

EJ Administrator: Windows PowerShell ISE = O X
File Edit View Tools Debug Add-ons Help
= H 4 B > |RunScipt(Fs) | B = | B | Bloo|®&@.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘

|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

=lforeach (Snumber in 1..5) {

= if ($number -eg 3) {
Write-Host "Skipping number 3.7
continue

Write-Host "Number: $number™

}

[N R ST

P5 C:\WINDOWS\system32> foreach ($number in 1..5) {
if ($number -eq
Write-Host "Skipping number 3."
continue

¥
Write-Host "Number: $number™

; |
Number: 1 {
Number: 2
Skipping number 3. |
Number: 4
Number: 5

PS C:\WINDOWS\system32>

|
|
Ln 15 Col 25 100% J

A foreach loop iterates through the numbers 1 through 5. It checks whether the current value
of Snumber is equal to 3 for each iteration. If the condition is met, the script will print
"Skipping number 3" and then use the continue keyword to skip the rest of the loop's code for
that iteration and move on to the next. If not, it will display "Number: " followed by the current
value of Snumber.

Return statement

The Return statement is used to exit a function or script block and return a value.

function Multiply-Numbers(S$a, Sb) {
return $Sa * Sb

Sresult = Multiply-Numbers 5 3
Write-Host "Result: Sresult"

www.alexandrumarin.com 83

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE — O
File Edit View Tools Debug Add-ons Help
=’ o4 g » b ® B |BO0O0 & 3.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered)

‘ A

|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

1 Bfunction Multiply-Numbers($a, $b) {
return fa = $b

}

Sresult = Multiply-Numbers 5 3

2
3
4
5
6 Write-Host "Result: $result"

P5 C:\WINDOWS\system32> function Multiply-Numbers($a, $b) {

return $a = $b
1
i

$result = Multiply-Numbers 5 3
Write-Host "Result: $result™

Result: 15

P5 C:\WINDOWS\system32>

Ln 10 Col 25

We have a user-defined function called Multiply-Numbers. This function accepts two
parameters, Sa and $b, and returns the product of their multiplication.

The function is then called with arguments 5 and 3, and the outcome is saved in the variable
Sresult.

Finally, the script prints "Result: " followed by the value of Sresult, which in this case is 15.

Exit statement

The Exit statement in PowerShell is used to terminate the current script or exit the current
session. It is similar to the return statement in functions but operates on the entire script or
session. When encountered, the Exit statement immediately stops the script's execution, and
any code after it will not be executed. It can be useful in situations where you need to
prematurely stop a script or exit from a specific code branch based on certain conditions.

Write-Host "Starting the script.”

if (Scondition) {
Write-Host "Exiting the script."
exit

}

www.alexandrumarin.com 84

http://www.alexandrumarin.com

Write-Host "Continuing with the script.”

Q Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help

0 & Bl 8 >) B = |8 Boo| s s,
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*{Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps1*(Recovered) findapplicationuninstallkeys.ps1
1 Write-Host "Starting the script.”

=if ($condition) {
Write-Host "Exiting the script.”™
exit

2
3
4
5
6
8 Write-Host "Continuing with the script.”
9

PS C:\WINDOWS\system32> Write-Host "Starting the script.”

if ($condition) {
Write-Host "Exiting the script.™
exit

1
¥

Write-Host "Continuing with the script.”

Starting the script.
Continuing with the script.

P5 C:\WINDOWS\system32>

Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
Untitled12.ps1*(Recoverad) testpsi Untitled14,ps1® X ‘

Ln13 Cal25 100% J

Try-Catch-Finally statement

The Try-Catch-Finally statement in PowerShell provides a structured way to handle errors
and exceptions in code. The Try block contains the code that may throw an exception, and if
any exception occurs, it is caught and processed in the Catch block. This allows for graceful
error handling and the execution of fallback code or error messages to users. The Finally
block, if present, will always execute, regardless of whether an exception was caught or not,
making it suitable for cleanup tasks. This construct is essential for creating robust scripts
that can handle unexpected situations and maintain control flow effectively.

try {
Code that might throw an exception
NoSuchCmdlet

}catch {

Handling the exception
Write-Host "An error occurred: 8_"

www.alexandrumarin.com

85

http://www.alexandrumarin.com

} finally {

Write-Host "Cleanup code"

Code that will always execute, regardless of whether an exception occurred

Q Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help

0@ B 4 B o») B = |8 Boo| & .
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*{Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps1*(Recovered) findapplicationuninstallkeys.ps1

1 Eltry {
Code that might throw an exception
NoSuchCmdTet
—}catch {
Handling the exception
Write-Host "An error occurred: §_"
=} finally {
Code that will always execute, regardless of whether an exception occurred
Write-Host "Cleanup code”

}

FOwm~ouswn

e

PS5 C:\WINDOWS\system32> try {
Code that might throw an exception
NoSuchCmdlet
}catch {
Handling the exception
Write-Host "An error occurred: $_"
} finally {
Code that will always execute, regardless of whether an exception occurred
Write-Host "Cleanup code”
}

An error occurred: The term "NoSuchCmdlet' is not recognized as the name of a cmdlet, function,

ng of the name, or 1f a path was included, verify that the path is correct and try again.
Cleanup code

PS C:\WINDOWS\system32>

Trap statement

Untitled.ps1*{Recovered)

Untitled12.ps1*(Recovered)

script file,

or operable program. Check the spelli

Ln16 Col 25

Untitled7.ps1*(Recovered)

testpsl

‘ A

Untitled14,ps1® X ‘

The Trap statement in PowerShell is used to handle terminating errors that occur within a

specific scope. Unlike Try-Catch, Trap is not used for structured error handling, but rather for

intercepting and responding to errors at a script level or inside a function or script block.
When a terminating error is encountered, the Trap block is executed, allowing you to log the

error, perform cleanup actions, or provide custom error handling. It provides a way to handle

errors globally within a script, without needing to explicitly wrap each section of code in a
Try-Catch block. However, it's important to note that Trap does not handle non-terminating

errors.

trap {
#Handling all exceptions

write-host "file not found, skipping"

www.alexandrumarin.com

86

100%

http://www.alexandrumarin.com

continue

}

Smodtime = Get-ItemProperty c:\manoj -erroraction stop

B sdministrator: Windows PowerShell ISE — O x|
File Edit View Tools Debug Add-ons Help

0 e B & B) B = |8 | Boo|mE.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*{Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*{Recovered) Untitled7.ps1*(Recovered) ‘ |

| UntitledB.ps1(Recovered) | UntitiedS.ps1”(Recovered) | Untitied10ps1"(Recovered) | findapplicationuninstallkeysps] | Untitled12,ps1"{(Recovered) | testpsl | Untitlediapst™ X | |

1 Etrap {

#Handling all exceptions

write-host "file not found, skipping”
continue

1

$modtime = Get-ItemProperty c:\manoj -erroraction stop

o W

PS5 C:\WINDOWS\syste:
#Handling all e> 5
write-host "file not found, skipping™
continue
1

$modtime = Get-ItemProperty c:\manoj -erroraction stop
file not found, skipping

PS C:\WINDOWSsystem32=

Ln 10 Col 25 100%

Until loop

The Until loop in PowerShell is a type of loop that repeatedly executes a block of code until a
specified condition evaluates to True. Unlike the While loop, which runs as long as the
condition is True, the Until loop runs as long as the condition is False. It ensures that the
code block will be executed at least once, even if the condition is initially True. Once the
condition becomes True, the loop terminates, and the script execution continues with the
next line of code after the loop. The Until loop is useful when you want to perform an action
until a certain condition is met, and you are unsure how many iterations will be required
before the condition becomes True.

Scounter=0
do {

www.alexandrumarin.com 87

http://www.alexandrumarin.com

Write-Host "Counter: Scounter"
Scounter++
} until (Scounter -ge 5)

EJ Administrator: Windows PowerShell ISE = O X
File Edit View Tools Debug Add-ons Help
0 & 3 4 B » b] 00| @ s,
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘
1 Scounter = 0
2 =do {
3 Write-Host "Counter: $counter”
4 Scounter++
5 } until (Scounter -ge 5)
6

P5 C:\WINDOWS\system32> $counter = O
do {
Write-Host “"Counter: $counter”
$counter++
} until ($counter -ge 5)

Counter: 0
Counter: 1
Counter: 2
Counter: 3
Counter: 4

Ln 13 Col 25 100%

www.alexandrumarin.com 88

http://www.alexandrumarin.com

Working with Functions

PowerShell functions are a fundamental concept that allow you to organize and reuse code.
They allow you to encapsulate a set of instructions in a named block, making your code
more modular and manageable. In this chapter, we'll go over the fundamentals of working
with functions in PowerShell.

Function Definition and Syntax

Function Declaration

The function keyword is followed by the function name and a pair of curly braces to define a
function.

The names of functions should be meaningful and adhere to the naming conventions and
arameters can be specified after the function name in parentheses (). The code inside the
curly braces defines the body of the function. Functions can also have a return value
specified using the return keyword. Once defined, functions can be called from other parts of
the script or from other functions, making code organization and reusability easier in
PowerShell scripts.

function SayHello {
Write-Host "Hello, World!"

Function Structure

Functions consist of a set of statements enclosed within the curly braces {}.
Statements within the function define the logic and actions to be performed.

function MultiplyNumbers {
Sresult=5*7
Write-Host "The result is: Sresult"

www.alexandrumarin.com 89

http://www.alexandrumarin.com

Function Parameters

Parameters are placeholders that allow you to pass values into a function. They can be
optional or mandatory. Different types of parameters, such as positional parameters and
named parameters, can be defined.

They are defined after the function name in parentheses (). Parameters serve as
placeholders for values that will be passed to the function when it is called. To ensure proper
data validation, each parameter is assigned a specific data type, such as [string], [int], or
[bool]. When the function is called, values for each parameter are provided, and these values
are then used within the function to perform specific tasks. By allowing users to customize
the behavior of the function based on the input they provide, function parameters enable
greater flexibility and reusability.

function AddNumbers(Snum1, Snum2) {
Ssum = $num1 + Shum?2
Write-Host "The sum of Snum1 and $num2 is: Ssum"

Function Invocation and Return Values

Calling Functions

Functions can be called by using their name followed by parentheses ().
Arguments can be passed into functions when they are called.

SayHello # Calling the SayHello function
MultiplyNumbers # Calling the MultiplyNumbers function

www.alexandrumarin.com 90

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
& H 4 B » » Bl% |8 | oo om.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered)

| Untitled8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1

1 Elfunction SayHello{
Write-Host "Hello world"
}

3

4

5 Dfunction MultiplyNumbers{
[Smultiply = 2*3

7 Write-Host "$multiply”
8 [}

9

10 SayHello # Calling the SayHello function
11 MultiplyNumbers # Calling the MultiplyNumbers function

P5 C:\WINDOWS\system32= function SayHello{
Write-Host "Hello world"

1

i

function MultiplyNumbers{
fmultiply = 2=3
Write-Host "Smultiply™
}
SayHello # Calling the SayHello function
MultiplyNumbers # Calling the MultiplyNumbers function

Hello world
6

PS C:\WINDOWSsystem32=

Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘

Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘

Ln 17 Col 25

Return Values

The return keyword allows functions to return values.

Variables can be assigned to return values, or they can be used directly.

function GetFullName($firstName, SlastName) {
SfullName = "$firstName SlastName"
return $fullName

Write-Host "Full Name: $fullName"

SfullName = GetFullName -firstName "John" -lastName "Doe"

www.alexandrumarin.com

91

http://www.alexandrumarin.com

Function Scope and Variables

Functions have their own scope, which means variables declared inside a function are local
to that function.

Local variables cannot be accessed outside the function unless they are explicitly returned.
This is the same discussion we had previously in the Variable Scopes chapter.

function MultiplyNumbers(Snum1, Snum2) {
Sresult = Snum1 * Shum?2
Write-Host "The result is: Sresult"

Any part of the script can access and modify global variables. Working with global variables
requires caution to avoid unintended consequences.

SglobalVariable = "Hello, Global!"

function PrintGlobalVariable {
Write-Host "Global Variable: SglobalVariable"

PrintGlobalVariable

Advanced Function Concepts
Pipelining

Pipelining is at the heart of PowerShell's design philosophy, providing a streamlined and
elegant way to process and manipulate data. The output of one cmdlet or command
becomes the input of the next, allowing you to easily chain together multiple commands.

The pipeline symbol | is used to connect cmdlets, directing the output of the preceding
command to the input of the subsequent one. This data flow allows you to perform complex
operations without the need for temporary variables or complex loops.

Pipelining improves code readability and conciseness by allowing complex tasks to be
expressed in a single line of code. You can, for example, filter, sort, and format data in a
single command, making it easier to understand and maintain.

Furthermore, pipelining encourages code reusability by allowing you to combine cmdlets to
create custom functions or modules, allowing you to share code across scripts or projects.

www.alexandrumarin.com 92

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_scopes?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines?view=powershell-7.3
http://www.alexandrumarin.com

PowerShell's use of pipelining allows users to interact with a wide variety of objects,
including files, services, and registry entries, making it a versatile tool for system
administration, automation, and data processing tasks.

Overall, pipelining is an important feature that allows PowerShell users to work more
efficiently with data by allowing them to create robust and flexible scripts for a variety of
tasks, ranging from simple one-liners to more complex automation workflows.

function Get-ProcessOwner {
[CmdletBinding()]
param (
[Parameter(ValueFromPipeline=Strue, Position=0)]
[Alias("Name")]
[string]SProcessName

)

process {

foreach (Sname in SProcessName) {

Sprocess = Get-Process -Name Sname -IncludeUserName
Sowner = $process | Select-Object -ExpandProperty UserName
Write-Host "Process: Sname, Owner: Sowner"

}
}

"mspaint", "explorer" | Get-ProcessOwner

www.alexandrumarin.com

93

http://www.alexandrumarin.com

EJ Administrator: Windows PowerShell ISE = O X
File Edit View Tools Debug Add-ons Help

0 & 3 4 g » b %8 Eoo|lm®.
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled.ps1*(Recovered) Untitled7.ps1*(Recovered) ‘
A
|Untit|ed8.ps1*(REcovered) Untitled9.ps1*(Recovered) Untitled 10.ps 1*{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsi Untitled14,ps1* X ‘
i param B
4 [Parameter(ValueFromPipeline=Strue, Position=0}]
5 [Alias({"Name")]
[[string] $ProcessName
8
9 = process {
10 = foreach (Sname in $ProcessName) {
11 $process = Get-Process -Name $name -IncludeUserName
12 fowner = Sprocess Select-Object -ExpandProperty UserName
13 Write-Host "Process: 3name, Owner: $owner"”
14
15 K
16 [}
17
18 "mspaint™, "explorer” Get-ProcessOwner
19

P5 C:\WINDOWS\system32= function Get-ProcessOwner {
[Cmd1etBindi
param (
[Parameter (ValueFromPipeline=$true, Position=0)]
[Alias("Name™)]
[string] $ProcessName

process {
foreach ($name in $ProcessName) {
$process = Get-Process -Name Sname -IncludeUserName
Sowner = $process | Select-Object -ExpandProperty UserName

Write-Host "Process: $name, Owner: Jowner™

1
I

3

E

1
i
"mspaint™, "explorer” | Get-ProcessOwner

mspaint, Owner: Vipe
explorer, Owner: Viper,

P5 C:\WINDOWS\system32>

Ln23 Col25 100% J

The code provided defines the PowerShell function "Get-ProcessOwner." This function
accepts pipeline input and has a single parameter, $ProcessName.

The process block within the function processes the input objects received via the pipeline. It
loops through the process names passed through $ProcessName.

It uses the Get-Process cmdlet with the -IncludeUserName parameter for each process
name to retrieve detailed information about the process, including its owner.

Select-Object -ExpandProperty UserName is then used to extract the owner's username.
Finally, the function uses Write-Host to display the process name and its corresponding
owner's username.

Outside of the function, the code employs the pipeline to send an array of process names
("mspaint" and "explorer") to the Get-ProcessOwner function, which processes each name
and returns the owner information associated with it.

Error Handling

Functions can implement error handling mechanisms using Try-Catch blocks to handle and
respond to exceptions gracefully. Error messages can be customized to provide meaningful
information to users.

function DivideNumbers(Snumerator, Sdenominator) {
try {

www.alexandrumarin.com 94

http://www.alexandrumarin.com

Sresult = Snumerator / Sdenominator
Write-Host "Result: Sresult"

}
catch {

Write-Host "Error occurred: $(S_.Exception.Message)"

}

DivideNumbers -numerator 10 -denominator 0

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help

D@ H & 5 B Ausmm)) |8 Eoo|nd.

| Untitled1.ps1%(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*{Recovered) Untitled4.ps1*(Recovered) Untitled6.ps1%{Recovered) Untitled?.ps1*(Recovered)

‘ A

|Umtit|ed8.ps1*(Recovered) Untitled9.ps1*(Recovered) Untitled 10.ps1*(Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recoverad) testpsi Untitled14.ps1® X ‘

1 Elfunction DivideMNumbers(Snumerator, Sdenominator) {
2 =2 try {

3 Sresult = Snumerator Sdenominator

4 Write-Host "Result: Sresult”

5

6 = catch {

7 Write-Host "Error occurred: $(3_.Exception.Message)”
8 1

9 [3

1

11 DivideNumbers -numerator 10 -denominator O

1z

P5 C:\WINDOWS\system32> function DiwvideNumbers($numerator, $denominator) {
try {
$result = $numerator / $denominator
Write-Host "Result: $result™
3}
1
catch {
Write-Host "Error occurred: $($_.Exception.Message)"
3
1

1
¥

DivideNumbers -numerator 10 -denominator 0

Error occurred: Attempted to divide by zero.

PS C:\WINDOWSsystem32=

Ln15 Col 25

The code above defines the PowerShell function "DivideNumbers." The numbers to be
divided are represented by two parameters, Snumerator and Sdenominator.

A try block within the function attempts to divide the Snumerator by the Sdenominator.

If the division is successful, the result is calculated and displayed using Write-Host.
If an error occurs during the division, the catch block captures the exception and uses

Write-Host to display a custom error message. The error message contains information

about the specific error caused by the division operation, such as division by zero.

The code outside the function invokes the DivideNumbers function with the parameters
-numerator 10 and -denominator 0. Because dividing by zero is not permitted, an exception

occurs, and the catch block displays the appropriate error message.

www.alexandrumarin.com

http://www.alexandrumarin.com

Managing Files and Folders

In previous chapters, we covered the basics of PowerShell and looked at different ways to
work with variables, operators, and control flow statements. We are now embarking on a new
adventure as we explore the world of managing files and folders with the power of
PowerShell.

In this chapter, we'll look at PowerShell's incredible capabilities for automating file and folder
management tasks. PowerShell provides a robust set of cmdlets and techniques to
streamline these operations, whether you need to create, rename, delete, search, or
manipulate files and folders.

On a daily basis, you deal with countless files and folders as an IT professional or system
administrator. Manually performing repetitive tasks or managing files across multiple
machines takes time and is prone to error. That's where PowerShell comes in handy!
PowerShell's simple syntax, extensive cmdlet library, and powerful scripting capabilities
allow you to automate file and folder management tasks, saving you time and effort.

In this chapter, we will look at the essential techniques and cmdlets that will allow you to
manage files and folders more effectively.

Navigating the File System

As IT professionals and system administrators, we frequently work with files and folders that
are spread across multiple directories and drives. PowerShell provides us with the tools and
commands we need to easily navigate the file system, making it a valuable asset in our daily
tasks. It is critical to understand the following concepts when working with files and folders:

Understanding the File System Hierarchy

Drives and Mount Points

Drives serve as root-level containers for files and folders in the file system. Each drive, such
as C: or D;, is assigned a letter and represents a storage device or logical volume. Using
PowerShell's Get-PSDrive command, we can obtain a list of available drives and their
properties.

www.alexandrumarin.com 96

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-psdrive?view=powershell-7.3
http://www.alexandrumarin.com

Directories and Paths

Directories, also known as folders, are containers that aid in the organization of files. They
can contain additional directories, resulting in a hierarchical structure. In contrast, a path
represents the location of a file or directory within the file system. Absolute and relative
paths are both possible.

Absolute paths provide the complete location of a file or directory, beginning at the file
system's root. "C:\Users\John\Documents\example.txt" is an example of an absolute path.
Relative paths are relative to the current directory and are based on the current location. For
example, "..Desktopmyfile.txt" refers to a file called "myfile.txt" that is located in the current
location's parent directory.

Let's delve into some practical examples to reinforce our understanding:

To obtain a list of available drives and their properties, use the following command:

Get-PSDrive

You can navigate to a specific directory by using the Set-Location (cd) command. For
example, to change the current directory to the "Documents” directory, type:

Set-Location -Path "C:\Users\User\Documents"

Use the Get-Childltem command to list the files and directories within a given path. To see
the contents of the "Documents” directory, for example, type:

Get-Childltem -Path "C:\Users\User\Documents"

The Set-Location command can be used to navigate through directories using both absolute
and relative paths. Here's an illustration:

Set-Location -Path "C:\Users\User"
Set-Location -Path "..\Desktop"

In this example, we first change the current location to the "C:\Users\John" directory and
then navigate to the parent directory ("Desktop”) using the relative path.

Understanding the file system hierarchy is essential for PowerShell navigation. We can
navigate the file system and perform various file management tasks with ease if we
understand the concepts of drives, directories, and paths.

www.alexandrumarin.com 97

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-location?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-location?view=powershell-7.3
http://www.alexandrumarin.com

Listing Files and Folders

Once we've mastered the file system hierarchy, we'll look at how to effectively list files and
folders using PowerShell. We can obtain a comprehensive view of the contents of a directory
by using the appropriate commands and techniques. Consider the following approaches for
listing files and folders:

Get-Childltem

The Get-Childltem cmdlet is a versatile command that allows us to retrieve a list of files and
folders within a specified directory. It provides various parameters to customize the output,
such as filtering by file extension or excluding specific items.

Listing all files and folders in the current directory:

Get-Childltem

Specifying a directory to list its contents:

Get-Childltem -Path "C:\Users\User\Documents"

Filtering files by extension:

Get-Childltem -Path "C:\Users\User\Documents" -Filter "*.txt"

Using wildcards

When listing files and folders, wildcards are powerful symbols that allow us to perform
pattern matching. They enable flexible and dynamic searches based on predefined criteria.

Listing all files with a ".docx" extension:

Get-Childltem -Path "C:\Users\User\Documents" -Filter "*.docx"

Listing all folders starting with "Project":

Get-Childltem -Path "C:\Users\User\Documents" -Filter "Project*"

www.alexandrumarin.com 98

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
http://www.alexandrumarin.com

Displaying detailed information

We can get more information about files and folders, including hidden and system files, by
passing the "-Force" parameter to the Get-Childltem command.

Listing all files and folders with detailed information:

Get-Childltem -Path "C:\Users\User\Documents" -Force

B Administrator: Windows PowerShell ISE - o X
File Edit Wiew Iools Debug Add-ons Help

A= = EA-{:_‘.QF—— m [@ .
| Untitled6.ps1*(Recovered) Untitled7.ps1*([Recovered) Untitled8.ps1*(Recovered) Untitledd.ps1*[Recovered) Commands X X
!‘Umitled'\O‘psl‘(Recovared] findapplicationuninstallkeys.ps1 Untitled2,ps1*(Recovered) testps] Untitled 14.ps1*(Recoverad) Ol Modules: | Al
| | Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.psT*(Recovered) Untitled4,psT*(Recovered) x Name:
1 Get-ChildItem -Path "C:\Users\user\Documents” -Force
A

Add-AppProvisionedsharedPackageContainer

AAdd-AppSharedPackageContainer
Add-AppvClientConnectionGroup
AAdd-AppvClientPackage
Add-AppvPublishingServer

| Add-AppxPackage

| Add-AppxProvisionedPackage
Add-AppxVolume
AAdd-BCDataCacheExtension
Add-BitLockerKeyProtector
Ada-BitsFile

| AAdd-CertificateEnrollmentPolicyServer

Add-Computer
Add-Content

T Add-DnsClientDohServerAddress

Add-DnsClientNrptRule

Add-DieClusterTMMapping

Add-EtwTraceProvider

Add-Histery

Add-InitiatoridToMaskingSet

Add-JobTrigger

Add-KdsRootKey

Add-LocalGrouphember

Fax
GTA San Andreas User Files
Inno Setup Examples Output
Innok: -

Marvel's Spider-Man Remastered

R FEE R FE R EFERFEEEEEEE

Overwatch Ade-Member
Polymorph Games Ado-MpPreference
= Add-MpPreference

Scanne Ado-NetEventhetworkadapter

i:;:"i = Add-NetEventPacketCaptureProvider

Visual Studie 2022 Ado-NeteventProvider

WE Games - Add-NetEventVFPProvider
7 3;;3{‘;‘;”“;“"”” Add-NetEventVmNetwarkAdaster
1548 exanmple.iss Adg-NetEventymsSwitch

Ln43 Col 25 100%

Sorting and formatting the output

To organize the output in a more structured manner, we can sort and format the results
using additional PowerShell commands such as Sort-Object and Format-Table.

Listing files and folders sorted by name:

Get-Childltem -Path "C:\Users\User\Documents" | Sort-Object -Property Name

Listing files and folders in a tabular format:

www.alexandrumarin.com 99

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/sort-object?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/format-table?view=powershell-7.3
http://www.alexandrumarin.com

Get-Childltem -Path "C:\Users\User\Documents" | Format-Table -Property Name,
LastWriteTime, Length

We can navigate through directories, filter files based on specific criteria, and retrieve
detailed information about our files and folders by combining these techniques. PowerShell
allows us to customize the output to meet our specific needs.

Displaying Path Information

It's often useful to display and extract specific path information when working with files and
folders in PowerShell to understand the location, parent directories, or file extensions. We
can easily retrieve and manipulate path information by utilizing PowerShell's built-in features.
Here are a few methods for displaying path information:

Get-ltem

The Get-ltem cmdlet allows us to retrieve detailed information about a specific file or folder,
including its full path.

Displaying the full path of a file:

(Get-ltem -Path "C:\Users\User\Documents\example.txt").FullName

www.alexandrumarin.com 100

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-item?view=powershell-7.3
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE

| File Edit View Tools Debug Add-ons

' & |l 4 1] P o B w8 oo & (O.

| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) Untitledd.ps1*(Recovered)

| Untitled10.ps1"{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testps] Untitled14.ps1*(Recovered)
| | Untitled1.p51*(Recovered) UntitledZ.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitledd.ps1*(Recovered)

1 (Get-Item -Path "C:\Users\User\Documents'example.txt"}.FulIName

- (Get-Ttem —Path " User\Documents\example. txt™}. FullName

Commands X

Modules: | All

Mame:

A
Add-AppProvisionedsharedPackageContainer
Add-AppSharedPackageContainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-ApprPackage
Add-AppxProvisionedPackage
Add-AppxValume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrolimentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDonServerAddress
Add-DnsClientNrotRule
Add-DtcClusterTMapping
Add-EtwTraceProvider

Add-History
Add-InitiatorldToMaskingSet
Add-JobTrigger

Add-KdsRootKey
Add-LocalGrouphember
Add-Member

Add-MpPreference
Add-MpPreferance
Add-NetEventNetworkAdapter
Add-NeteventPacketCaptureProvider
Add-NeteventProvider
Add-NetEventVFpProvider
Add-NetEventVmhetworkAdapter
Add-NeteventvmSiwitch

Ln4 Col 25

100%

Extracting the parent directory

By utilizing the Split-Path cmdlet, we can extract the parent directory from a given file or

folder path.

Getting the parent directory of a file:

Split-Path -Path "C:\Users\User\Documents\example.txt" -Parent

www.alexandrumarin.com

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/split-path?view=powershell-7.3
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE - o
file Edit View Tools Debug Add-ons Help

= = R a8 » b ® | B | [Bloo| 6.
| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) Untitledd.ps1*(Recovered) Commands X
| Untitled10.ps1"{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testps] Untitled 14.ps1*(Recovered) O Moduies: [an v
| Untitled1.p51*(Recovered) UntitledZ.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitledd.ps1*(Recovered) x e
1 Split-Path -Path "C:\Users\User\Documents'example.txt" -Parent
A

Add-AppProvisionedsharedPackageContainer
Add-AppSharedPackageContainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-ApprPackage
Add-AppxProvisionedPackage
Add-AppxValume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrolimentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDonServerAddress
Add-DnsClientNrotRule
Add-DtcClusterTMapping
Add-EtwTraceProvider
Add-History
Add-InitiatorldToMaskingSet
Add-JobTrigger

Add-KdsRootKey
Add-LocalGrouphember
Add-Member

Add-MpPreference
Add-MpPreferance
Add-NetEventNetworkAdapter
Add-NeteventPacketCaptureProvider
Add-NeteventProvider
Add-NetEventVFpProvider
Add-NetEventVmhetworkAdapter
Add-NeteventvmSiwitch

. Split-Path -Path "C:\Us ser\Documents\example. txt” —Parent

Ln4 Col 25

100%

Obtaining the file name

The Get-ltem cmdlet also provides an easy way to extract just the file name from a given
path.

Retrieving the file name from a path:

(Get-ltem -Path "C:\Users\User\Documents\example.txt").Name

www.alexandrumarin.com 102

http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE
file Edit View Tools Debug Add-ons Help

DoE H & a » P o E| = 8 Booe@E.

| Untitled6.ps1~(Recovered) UntitledT.ps1*(Recovered) Untitled8.ps1*(Recovered) Untitledd,ps1*(Recovered)

| Untitled10,ps1"(Recovered) findapplicationuninstallkeys.ps1 Untitled12,ps1"(Recovered) testpsT Untitled 14.ps1*(Recovered)

| Untitled1.p51*(Recovered) UntitledZ.ps1*(Recovered)
1 (Get-Ttem -Path "C:\Users\User\Documents\example.txt").Name

Untitled3.ps1*(Recovered) Untitledd.ps1*(Recovered)

~ (Get-Ttem -Path "

User\Documents\example. txt™) . Name

Commands X x
Modules: | All J

Name:

A

Add-AppProvisionedsharedPackageContainer
Add-AppSharedPackageContainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-ApprPackage
Add-AppxProvisionedPackage
Add-AppxValume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrolimentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDonServerAddress
Add-DnsClientNrotRule
Add-DtcClusterTMapping
Add-EtwTraceProvider
Add-History
Add-InitiatorldToMaskingSet
Add-JobTrigger

Add-KdsRootKey
Add-LocalGrouphember
Add-Member

Add-MpPreference
Add-MpPreferance
Add-NetEventNetworkAdapter
Add-NeteventPacketCaptureProvider
Add-NeteventProvider
Add-NetEventVFpProvider
Add-NetEventVmhetworkAdapter
Add-NeteventvmSiwitch

Ln4 Col 25 100%

Extracting the file extension

Using the Path.GetExtension method, we can extract the file extension from a given file path.

Getting the file extension:

[System.|0.Path]::GetExtension("C:\Users\User\Documents\example.txt")

www.alexandrumarin.com

103

https://learn.microsoft.com/en-us/dotnet/api/system.io.path.getextension?view=net-7.0
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons

= = R =] m-@’;_— a‘@;

[Untitiedtips1*(Recovered) Untitled7.ps1®(Recovered) Untitled2.ps1*(Recovered) Untitledd.ps1*(Recovered)

[Untitied10,ps1(Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testps] Untitled14.ps1*(Recovered)
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitledd.ps1*(Recovered)

1 [System.I0.Path] ::GetExtension("C:\Users\User\Documents\example. txt")

: :GetExtension("C:\Users\User\Documents\example. txt™)

Commands X

Modules: | All

Mame:

A
Add-AppProvisionedsharedPackageContainer
Add-AppSharedPackageContainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-ApprPackage
Add-AppxProvisionedPackage
Add-AppxValume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrolimentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDonServerAddress
Add-DnsClientNrotRule
Add-DtcClusterTMapping
Add-EtwTraceProvider

Add-History
Add-InitiatorldToMaskingSet
Add-JobTrigger

Add-KdsRootKey
Add-LocalGrouphember
Add-Member

Add-MpPreference
Add-MpPreferance
Add-NetEventNetworkAdapter
Add-NeteventPacketCaptureProvider
Add-NeteventProvider
Add-NetEventVFpProvider
Add-NetEventVmhetworkAdapter
Add-NeteventvmSiwitch

Ln4 Col 25

100%

Displaying the root directory

The Get-ltem cmdlet combined with the Split-Path cmdlet can be used to display the root

directory of a given path.

Showing the root directory:

Split-Path -Path "C:\Users\User\Documents\example.txt" -Qualifier

www.alexandrumarin.com

104

http://www.alexandrumarin.com

Files and Folders Operations

In this section, we'll look at how to use PowerShell to create, rename, and delete files and
folders. These operations are critical for managing and organizing data on your system.
These tasks can be completed efficiently and effectively using PowerShell's extensive set of
cmdlets and functions.

Creating Files and Folders

Creating files and folders is an essential part of any file management workflow. PowerShell
offers several ways to accomplish this task, including the New-Iltem cmdlet.

Creating a new folder:

New-Item -ltemType Directory -Path "C:\NewFolder"

Creating a new file:

New-Item -ltemType File -Path "C:\NewFolder\example.txt"

Also, the OQut-File cmdlet allows you to create a new file and write content to it in a single
command.

Creating a new file and writing content:

"Hello, World!" | Out-File -FilePath "C:\NewFolder\example.txt"

Renaming Files and Folders

When you want to change the names or paths of files and folders, renaming them is a
common operation. By using the Rename-ltem cmdlet, PowerShell provides a simple way to
accomplish this.

Renaming a file:

Rename-Item -Path "C:\OldFolder\oldfile.txt" -NewName "newfile.txt"

Renaming a folder:

www.alexandrumarin.com 105

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-item?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/out-file?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/rename-item?view=powershell-7.3
http://www.alexandrumarin.com

Rename-Item -Path "C:\OldFolder" -NewName "NewFolder"

Deleting Files and Folders

Another important task in data management is the deletion of files and folders. PowerShell
provides a variety of options for removing unwanted files and folders, including the
Remove-ltem cmdlet.

Deleting a file:

Remove-ltem -Path "C:\OldFolder\oldfile.txt"

Deleting a folder:

Remove-ltem -Path "C:\OldFolder" -Recurse

The -Recurse parameter is used to delete folders and their contents recursively.

Copying Files and Folders

When you need to duplicate or backup data, copying files and folders is a common task.
Copy-ltem is one of PowerShell's simple yet powerful cmdlets for copying files and folders.

Copying a file to a new location:

Copy-Item -Path "C:\Path\to\Source\File.txt" -Destination "C:\Path\to\Destination"

In this example, we use the Copy-ltem cmdlet to copy the file "File.txt" from the source path
to the destination path.

Copying a folder and its contents to a new location:

Copy-ltem -Path "C:\Path\to\Source\Folder" -Destination "C:\Path\to\Destination" -Recurse

www.alexandrumarin.com 106

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-item?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/copy-item?view=powershell-7.3
http://www.alexandrumarin.com

This example demonstrates how to copy a folder and its contents to a new location. By
including the -Recurse parameter, the Copy-ltem cmdlet recursively copies all files and
subfolders within the source folder.

Moving Files and Folders

Moving files and folders allows you to efficiently reorganize and manage your data.
Move-ltem is a straightforward cmdlet in PowerShell for moving files and folders.

Moving a file to a new location:

Move-ltem -Path "C:\Path\to\Source\File.txt" -Destination "C:\Path\to\Destination"

In this example, we use the Move-ltem cmdlet to move the file "File.txt" from the source path
to the destination path. The file is effectively relocated to the new location.

www.alexandrumarin.com 107

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/move-item?view=powershell-7.3
http://www.alexandrumarin.com

Modifying File Attributes and Permissions

Let's look at how to change file attributes and permissions with PowerShell. The ability to
manage file attributes and permissions is critical for data security and controlling file
access. PowerShell provides a variety of cmdlets and techniques to help you complete these

tasks quickly.

Modifying File Attributes

File attributes specify a file's properties, such as read-only, hidden, archive, and system. The
Get-Item and Set-IltemProperty cmdlets in PowerShell allow you to change these attributes
as needed. Get-Item retrieves the file object, and Set-ltemProperty modifies the desired

attributes.

Modifying the read-only attribute of a file:

Sfile = Get-Item -Path "C:\Path\to\File.txt"
Sfile | Set-ltemProperty -Name IsReadOnly -Value Sfalse

E¥ Administrater: Windows PowerShell ISE
file Edit View Iools Debug Add-ons Help
S = R a » [R

| Untitled6.ps1*(Recoversd) Untitled7.ps1*(Recovered)

Boo| n6.

Untitled@.ps1*(Recaversd) Untitled9.ps1*(Recoversd)

| Untitled10.ps1"(Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1(Recovered) testps] Untitled14.ps1*(Recovered)

Untitled2.ps1*(Recovered)

1 $file = Get-Ttem -Path "C:\Users\user\Documents\example. txt"
2 3file

| Untitled1.ps1~(Recovered) Untitled3.ps1*{Recovered) Untitled4 ps1*(Recovered)

Set-ItemProperty -Name IsReadOnly -Value $false

PS5 C:\WINDOWS\system32» $file = Get-Item -Path "C:\Users\user\Documents\example.txt"
$File | Set-TtemPropert:

Name IsReadOnly -Value $false

PS C:\WINDOWS\system32>

Commands X
Modules: | All
Name:

A
Add-AppProvisionedSharedPackageContainer
AAdd-AppSnaredPackageContainer
AAdd-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppuPackage
AAdd-AppxProvisionedPackage
Add-AppxVolume
Add-BCDataCacheExtension
AAdd-BitLockerkeyProtector
Add.-BitsFile
AAdd-CertificateEnrollmentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDonServerAddress
Add-DnsClientNrptRuie
Add-DieClusterTMMapping
Add-EtwTraceProvider
Add-Histary
Add-InitiatorldToMaskingSet
Add-JobTrigger

AAdd-KdsRootKey
AAdd-LocalGrouphMember
Add-Member

Add-MpPreference
AAdd-MpPreference
Add-NetEventNetworkAdapter
AAdd-NetEventPacketCaptureProvider
Add-NetEventProvider
AAdd-NetEventVFPProvider
Add-NetEventVmNetworkAdapter
Add-NetEventVmSuwitch

Ln4 Col 25

100% J

www.alexandrumarin.com

108

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-item?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-itemproperty?view=powershell-7.3
http://www.alexandrumarin.com

Modifying the hidden attribute of a file:

Sfile = Get-Item -Path "C:\Users\user\Documents\example2.txt"
Sfile | Set-ltemProperty -Name Attributes -Value ([System.lO.FileAttributes]::Hidden)

1 $file = Get-Ttem -Path "C:\Users\user\Documents\exampleZ. txt" teme
: $file | Set-TtemProperty -Name Attributes -Value ([System.IO.FileAttributes]::Hidden) "
4 Add-AppProvisionedSharedPackageContainer
Adg-AppSharedPackagaContainer
Ado-AppvClientConnectionGroup
Adg-AppvClientPackage
Add-AppvPublishingServer
Adg-AppxPackage
Ado-AppxProvisionedPackage
Add-AppxVolume
Adg-BCDataCacheExtension
Adg-BitLockerKeyProtector

Adg-BitsFile
Ado-CenficateEnrolimantPolicySenver
Adg-Computer

Adg-Content
Adg-DnsClientDonServerAddress

PS C:\WINDOWS\system32> $file = Get-Ttem —Path "C:' Documents\example2. txt”

§file | Set-ItemProperty -Name Attributes -value ([System.IO.FileAttributes]::Hidden) Add-DnsClientNrptRule

Ado-DicCluster TMMapping

Adg-EtwTraceProvider
PS C:\WINDOWS\system32> Ado-Histary
Ad-InitiatorldToMaskingSet
Ado-JobTrigger

Adg-KesRootKey
Ado-LocalGroupMemoer
Adg-Member

Add-MpPreference
Ado-MpPreference
Adg-NetEventhetworkAdapter
Ado-NetEventPacketCaptureProvider
Adg-NetEventProvider
Adg-NetEventVFPProvider
Adg-NetEventVmNetworkAdapter
Ado-Neteventvmswitch

Ln6 Col 25

E¥ Administrater: Windows PowerShell ISE - x|
file Edit View Iools Debug Add-ons Help

AR~ = B > [funsiptes) | P = |8 Boolo@.

[Untitied6ips1*(Recovered) Untitled7.ps1"Recovered) Untitied8.ps1*(Recovered) Untitledd ps1"(Recovered) Cammanas X x
| Untitled10.ps1~{Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsl Untitled14.ps1*(Recovered) S| Modues AN .

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.psT*(Recovered) Untitled4,psT1*(Recoverad) x

100% J

Modifying File Permissions

The access and privileges granted to users or groups for a specific file are controlled by file

permissions. The Get-Acl and Set-Acl cmdlets in PowerShell allow you to manage file
permissions efficiently. The Get-Acl cmdlet retrieves a file's Access Control List (ACL), and
the Set-Acl cmdlet modifies it.

Adding a new permission entry to a file:

Sfile = Get-Item -Path "C:\Path\to\File.txt"

Sacl = S$file | Get-Acl

Srule = New-Object
System.Security.AccessControl.FileSystemAccessRule("DOMAIN\Username”,
"FullControl", "Allow")

Sacl.AddAccessRule(Srule)

www.alexandrumarin.com 109

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-acl?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl?view=powershell-7.3
http://www.alexandrumarin.com

Sfile | Set-Acl -AclObject Sacl

File Edit Wiew Tools Debug Add-ons Help
e i 4 B » b B %« & |00 3.
| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) Untitledd.ps1*(Recovered) Commands X X
| Untitled10.ps1*(Recovered) findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsl Untitled14.ps1*(Recovered) S| Modues: | Al .
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitledd.ps1*(Recovered) X Name:
1 Sfile = Get-Ttem -Path "C:\Users\user\Documents\example3. txt”
Sacl = $file | Get-acl
Srule = New-Object System.Security.AccessControl.FileSystemAccessRule("VIPER\User", "FullControl®, "Allow") A
Sac]. AddAccessRule(Srule) Add-ApoProvisionedsharedPackageContainer

2
3
4 o
s Sfile | Set-Acl -AclObject Sac
H Add-AppSharedPackageContainer
7 Add-ApovClientCannectionGraup
g8 example3.txt Properties % Add-AppvClientPackage
Add-AppvRuslishingServer
General Secury Details Previous Versions Add-AppxPacksge
Object name: C:\Users\Lser\Documents\example 3t Add-AppxProvisionedPackage
Add-Appiviolume

Group or user names: Add-BCDataCachebExtension
B2 SYSTEM Add-BitLockerKeyProtector
88 Admiristrators (ViperAdminisirators) Add-CertificateEnrolimentPolicyServer

Add-Computer
Add-Content
Add-DnsClientDonServerAddress

To change pemmissions, click Edit

: ERETiE =D E Add-DnsClientNrptRule
Srule = New-Object 5 L ty. AccessControl. Files, QRN NSNNNITNN P Adg-DicClusterTMMapping
:\Eﬂ:‘?dégf:i ii{’atlit $acl Ful cortrol Ado-EtwTraceProvider
Modity Adg-History
Read & execute Adg-InitiatoridToMaskingSet
Read Age-JobTrigger
PS C:\WINDOWS\system32: ite Adg-KdsRootKey

Special pemmissions Add-LocziGroupMember

Add-Member

For special pemissions or advanced settings Advanced Ade-MpPreferance
dlick Advanced. Add-MpPreference
Add-NetEventNetworkAdapter
Adc-NetEventPacketCaptureProvider
= o Add-NetEventProvider
Adc-NetEventVFPProvider
Add-NetEventVimNetworkAdapter
Add-NetEventVimSwitch

Ln 10 Col 25 100%

Removing a specific permission entry from a file:

Sfile = Get-Item -Path "C:\Path\to\File.txt"

Sacl = Sfile | Get-Acl

Srule = Sacl | Where-Object {S_.IdentityReference.Value -eq "DOMAIN\Username"}
Sacl.RemoveAccessRule(Srule)

Sfile | Set-Acl -AclObject Sacl

To begin, we use the Get-ltem cmdlet to retrieve the file object and store it in the $file
variable. Get-ltem accepts the file path "C:\Path\to\File.txt" as an argument.

Following that, we use the Get-Acl cmdlet to retrieve the file's Access Control List (ACL) and
store it in the $acl variable.

We use the Where-Object cmdlet with a filter condition on the $acl to find the specific access
rule that matches the identity reference "DOMAINUsername." The rule is then saved in the
variable $rule.

We call the RemoveAccessRule() method on the $acl variable and pass the $rule variable
as an argument to remove the identified access rule from the ACL.

Finally, we use the Set-Acl cmdlet to update the file's ACL with the modified version. The
-AclObject parameter specifies the modified ACL from the $acl variable, and the file path
stored in $file is passed as an argument.

www.alexandrumarin.com 110

http://www.alexandrumarin.com

Searching for Files and Folders

The ability to search for specific files or folders based on various criteria is critical for
effective file management. PowerShell includes a number of cmdlets and techniques to

assist you in conducting effective searches.

Searching by File Name

You can quickly locate specific files in a directory or across the entire file system by
searching for them by name. We can use the Get-Childltem cmdlet to perform these

operations.

Searching for all files with a specific extension:

Get-Childltem -Path "C:\Path\to\Directory" -Filter "*.txt"

B Administrator: Windows PowerShell ISE
File Edit View Iools Debug Add-ons Help

O & 3 4 g » > B|® 8 Foo &,

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitledd.ps1*(Recovered) Untitledt.ps1*(Recovered)
| Untitled7.ps1*(Recoversd) | Untitleds ps1*(Recovered) | Untitled.ps1*(Recovered) | Untitled10.ps1"(Recovered)
| findapplicationuninstallkeys.psT Untitled12.ps1*(Recovered) testpsl | Untitied14.ps1*(Recovered) Untitied15.ps1*

1 Get-ChildItem -Path "C:\Users\User\Documents” -Filter "=.txt"
2

PS C:\WINDOWS\system32» Get-ChildItem -Path “C:\Users\User\Documents" -Filter "=.txt"

PS C:\WINDOWS\system32>

Commands X
Modules: | All
Mame:

Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-AppxVolume
Add-BCDataCachextension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrolmentFolicyServer
Add-Computer

Add-Content
Add-DnsClientDohServerAddress
Add-DnsClientNrptRule
Add-DtcClusterTMMapping
Add-EtwTraceProvider
Add-History
Ad-InitiatorldToMaskingSet
Add-JobTrigger

Add-KdsReotKey
Add-LocalGroupMember
Add-Member

Add-MpPreference
Add-MpFreference
Add-NeteventNetworkadapter
Add-NeteventPackstCaptureFrovider
Add-NeteventProvider
Add-NeteventVFPProvider
Add-NetEventVmNetworkAdapter
Add-Neteventvmsiitch
Add-NetEventVmSwitchProvider
Add-NeteventWrPCaptureProvider
Add-NetiPHtipsCertginding

Ln 14 Col 25

100%. J

In this example, we use the Get-Childltem cmdlet with the -Filter parameter to search for all

files with the ".txt" extension in the specified directory. This command will list all the

matching files found.

www.alexandrumarin.com

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
http://www.alexandrumarin.com

Searching for files containing a specific keyword in their name:

Get-Childltem -Path "C:\Path\to\Directory" -Filter "*keyword*"

| BY Administrator: Windows PowerShell ISE
| file Edit View Tools Debug Add-ons Help

RARF=N= a » b Bl 8 Boo|la@.

| | Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4 ps1*(Recovered) Untitled6 ps1~{Recovered)

| [Untitled7.ps1*(Recovere: Intitleds,ps1*(Recovere Intitled9.ps1*(Recove: Intitled10.ps1*(Recoverer
| | Untitled7.ps1%(Re: d] Untitled8.ps1*(Res d| Untitled9.ps1*(Recovered Untitled10.ps1*(R: d)

| | findapplicationuninstallkeys.pst Untitled12.ps1*(Recovered) testpsl

1 Get-ChildItem -Path "C:\Users\User'Documents” -Filter "~exam="
2

| Untitled14.ps1*(Recovered) Untitled15.ps1*

PS C:\WINDOWS\system32> Get-ChildItem -Path "C:\Users\User\Documents” —Filter "*exam*"

Directory: C:\Users\User\Documents

Inno Setup Examples Output
1548 example.iss
0 example3.txt

PS C:\WINDOWS\system32>

Commands X x|

Mosues: | Al . |

Mame:

Add-AppvClientConnectionGroup
AAdd-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-AppxVolume
AAdd-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
AAdd-CertificateEnrollmentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDohServerAddress
Add-DnsClientNrptRule
Add-DieClusterTMMapping
Add-EtwTraceProvider
Add-History
Add-InitiatoridToMaskingSet
Add-JobTrigger

Add-KdsRootKey
Add-LocalGrouphember
AAdd-Member

AAdd-MpPreference
Add-MpPreference
Add-NetEventNetworkAdapter
AAdd-NetEventPacketCaptureProvider
Add-NetEventProvider
Add-NetEventVFPProvider
Add-NetEventVmMNetworkAdapter
Add-NetEventVmSwitch
Add-NetEventVmSwitchProvider
Add-NetEventWFPCaptureProvider
Add-NetiPHttpsCertBinding

Ln 16 Col 25 100% J

This example demonstrates how to search for files that contain a specific keyword in their
name. By using the asterisk (*) as a wildcard, you can match files with any characters before

and after the keyword.

Searching by File Attributes

Searching for files based on their attributes allows you to filter files by specific

characteristics, such as read-only, hidden, or archived files.

Searching for read-only files:

[System.10.FileAttributes]::ReadOnly}

Get-Childitem -Path "C:\Path\to\Directory" | Where-Object {S_.Attributes -band

www.alexandrumarin.com

112

http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE
file Edit View Tools Debug Add-ons Help

& H 4 B » b B« B2

| Untitled1.ps1*(Recovered)

’;__

Untitled3.ps1*(Recovered)

™ @,

Untitled4 ps1*(Recovered)

Untitled2.ps1*(Recovered)

| Untitled7.ps1"(Recovered) | Untitiedg.ps1*(Recovered) | Untitled9.ps1*(Recovered)

| findapplicationuninstallkeys.psT Untitled12.ps1*(Recovered) testpsl
1 Get-ChildItem -Path "C:'\Users'User'Documents"

| Untitled14.ps1*(Recovered)

et-ChildItem —Path " ers\User\Documents” | Where-Object {$_.Attributes -band

lser\Documents

ned Documents

Untitled6 ps1~{Recovered)

| Untitled10.psT"(Recovered)

Untitled15.ps1* x

Where-Object {S_.Attributes -band [System.I0.FileAttributes]::ReadOnly}

m.T0. FileAttributes] : :Read0

= (m] X
Commands X x|
Modules: | All J
Name:

Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-AppxValume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile

Add-CertificateEnrol mentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDohServeraddress
Add-DnsClientNratRule
Add-DtcClusterTMMapping
Add-EtwTraceProvider
Add-History
Add-InitiatoridToMaskingSet
Add-JobTrigger

Add-KdsReotKey
Add-LocalGroupMember
Add-Member

Add-MpPreferance
Add-MpPreference
Add-NetEventNetworkAdapter
Add-NetEventPacketCaptureProvider
Add-NeteventProvider
Add-NetEventVFeRrovider
Add-NeteventvmNetworkAdapter
Add-NetEventVmSuwitch
Add-NetEventVmSwitchProvider
Add-NetEventWrPCaptureProvider
Add-NetiPHttpsCertBinding

Ln 13 Col 25 100% J

In this example, we use the Get-Childltem cmdlet to retrieve all files in the specified directory.
Then, we filter the files using the Where-Object cmdlet and check if the Attributes property

has the ReadOnly attribute enabled.

Searching for hidden files:

Get-Childltem -Path "C:\Path\to\Directory" -Hidden

www.alexandrumarin.com

113

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object?view=powershell-7.3
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE

| File Edit View Tools Debug Add-ons H
(= = a8 »

| Untitled1.ps1~(Recovered)

% |8 |Elool;d.

Untitled3.ps1*(Recovered)

Untitled2.ps1*(Recovered) Untitled4 ps1*(Recovered)

| | Untitled7.ps1*(Recovered) | Untitiedg.ps1*(Recovered) | Untitled9.ps1*(Recovered) | Untitled10.psT"(Recovered)
i

1 | findapplicationuninstallkeys.pst Untitled12.ps1*(Recovered) testpsl
1 Get-ChildItem -Path "C:\Users'User'\Documents" -Hidden

| Untitled14.ps1*(Recovered) Untitled15.ps1*

32> Get-ChildItem -Path *C e ~Hidden
Directory: C: User\Documents
Length Name
402 desktop.ini

20 example.txt
0 example2.txt

ystem32>

Untitled6 ps1~{Recovered)

Commands X

Modules: | All

Mame:

Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-AppxValume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile

Add-CertificateEnrol mentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDohServeraddress
Add-DnsClientNratRule
Add-DtcClusterTMMapping
Add-EtwTraceProvider

Add-History
Add-InitiatoridToMaskingSet
Add-JobTrigger

Add-KdsReotKey
Add-LocalGroupMember
Add-Member

Add-MpPreferance
Add-MpPreference
Add-NetEventNetworkAdapter
Add-NetEventPacketCaptureProvider
Add-NeteventProvider
Add-NetEventVFeRrovider
Add-NeteventvmNetworkAdapter
Add-NetEventVmSuwitch
Add-NetEventVmSwitchProvider
Add-NetEventWrPCaptureProvider
Add-NetiPHttpsCertBinding

Ln 18 Col 25

100% J

This example demonstrates how to directly search for hidden files by using the -Hidden
parameter with the Get-Childltem cmdlet. It will retrieve all hidden files in the specified

directory.

Searching by File Content

Searching for files based on their content allows you to locate files containing specific text

or patterns within their content.

Searching for files containing a specific string of text:

Get-Childltem -Path "C:\Path\to\Directory" -Recurse | Select-String -Pattern "search string"

www.alexandrumarin.com

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE - o
file Edit View Tools Debug Add-ons Help

= = R a8 » b ® | B | [Bloo| 6.
| | Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4 ps1*(Recovered) Untitled6.ps1(Recovered) Commands X
| Untitled7.ps1*(Recovered) | Untitled8.ps1*(Recovered) | Untitied9.ps 1" (Recovered) | Untitled10.psT"(Recovered) & Modules: | Al
| findapplicationuninstallkeys.ps1 Untitled12.ps1*{Recovered) test.ps] | Untitled14.ps1*(Recavered) Untitled15.ps1* x

1 Get-ChildItem -Path "C:\Users\User\Documents” -Recurse | Select-String -Pattern "this is" reme:
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-AppxValume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrol mentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDohServeraddress
Add-DnsClientNratRule
Add-DtcClusterTMMapping
Add-EtwTraceProvider

Get-ChildItem -Path ers\User\Documents" -Recurse | Select-String -Pattern “this is"”

Add-History
ample3.txt:Ll:this is an example Add-InitiatoridToMaskingSet
vanced Installer\Projects\Apache Tomcat-F \FILES\CommonF1 lesFolder Adg-lonTr

. 3 -JobTrigger
This is automatically generated file
FILES\CommonFilesFalder Add-KdsRootKey
Add-LocalGroupMember
FILES\CommonFi lesFolder i
stream. Add-Member
vanced Installer\Projects\Apache Tomcat-Files\Apache Tomcat\FILES\CommonFilesFolder Adg-MoPreferance

his is automatically generated file.
vanced Installer\P \Apache Tomcat-Files\Apache Tomcat\FILES\CommonFilesFolder Add-MpPreference
/ : Th 1 sing with regexp: ; Add-NetEventNetworkAdapter
s\Apache To FILES\CommonF lesFolder', Add-NetEventPacketCaptureProvider
s not valid Unicode stream.
Add-NetEventProvider

Add-NetEventVFPProvider
Add-NetEventVmNetworkAdapter
Add-NetEventVmSwitch
Add-NetEventVmSwitchProvider
Add-NetEventWFPCaptureProvider
5CertBinding

Ln 17 Col 25

100% J

In this example, we use the Get-Childltem cmdlet with the -Recurse parameter to search for
files in the specified directory and its subdirectories. Then, we use the Select-String cmdlet
to filter the files and find those that contain the specified search string.

Searching for files matching a regular expression pattern:

Get-Childltem -Path "C:\Path\to\Directory" -Recurse | Select-String -Pattern
"M\d{3}-\d{3}-\d{4}$"

This example demonstrates how to search for files that match a regular expression pattern.
The Select-String cmdlet uses the -Pattern parameter with a regular expression pattern to
filter the files accordingly.

www.alexandrumarin.com 115

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string?view=powershell-7.3
http://www.alexandrumarin.com

Manipulating the Windows Registry

Introduction to the Windows Registry
What is the Windows Registry?

On a Windows system, the Windows Registry is a hierarchical database that stores
configuration settings, options, and information about the operating system, hardware,
software, and user preferences. It acts as a centralized storage location for critical system
and application settings.

Keys, subkeys, and values make up the Registry. Subkeys are similar to subfolders within
keys, and values hold the actual data or configuration settings. It is a necessary component
of the Windows operating system, allowing it to function properly and allowing applications
to store and retrieve important data.

Why is the Registry important?

The Registry plays a crucial role in the Windows operating system and software applications.
It provides a centralized location for storing and retrieving critical system and application
settings, allowing for configuration changes and customization.

Here are a few reasons why the Registry is important:

e System Configuration: The Registry holds vital system configuration settings,
including hardware, drivers, startup programs, user profiles, and more. Modifying
these settings can have a significant impact on the system's behavior.

e Application Settings: Many applications use the Registry to store their configuration
settings, such as preferences, options, license information, and more. Modifying
these settings can customize the behavior of individual applications.

e Troubleshooting: The Registry is often a critical component in troubleshooting
system and application issues. Examining and modifying Registry settings can help
resolve compatibility problems, fix software conflicts, and troubleshoot performance
issues.

e Automation and Scripting: PowerShell and other scripting languages can interact
with the Registry to automate configuration changes, deploy settings, and perform
system maintenance tasks.

www.alexandrumarin.com 116

http://www.alexandrumarin.com

Understanding the Registry Hierarchy and Structure

The Registry is organized in a hierarchical structure, similar to a file system. It consists of
five main root keys:

e HKEY_CLASSES_ROOT (HKCR): Contains information about file associations, OLE
objects, and COM components.

e HKEY_CURRENT_USER (HKCU): Stores preferences and configuration settings for the
currently logged-in user.

e HKEY_LOCAL_MACHINE (HKLM): Contains settings and configuration data for the
local machine, including hardware, operating system, and installed software.

e HKEY_USERS (HKU): Holds user profiles and settings for all users on the system.
HKEY_CURRENT_CONFIG (HKCC): Contains information about the current hardware
profile used by the system.

Each root key contains a plethora of subkeys and values that contain configuration data and
settings. Subkeys are nested within parent keys, and the keys and values are organized in a
tree-like structure.

www.alexandrumarin.com 117

http://www.alexandrumarin.com

Reading Registry Values

In PowerShell, the Get-ltemProperty cmdlet is commonly used to retrieve registry values. It
allows you to access and read the values stored in specific registry keys. By specifying the
registry path and value name, you can retrieve the desired information.

Retrieving a Registry Value:

SregistryPath = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion'
SvalueName = 'CommonFilesDir'

Svalue = Get-ItemPropertyValue -Path SregistryPath -Name SvalueName

Write-Host "CommonFilesDir": Svalue"

B Administrator: Windows PowerShell ISE - o X
file Edit View Tools Debug Add-ons Help
= = R a8 » b B @« & 500 & (@,
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4 ps1*(Recovered) Untitled6.ps1~(Recovered) Commands X x
| Untitled7.ps1*(Recovered) | Untitled8.ps1*{Recovered) | Untitied9.ps1*(Recovered) | Untitled10.ps1*(Recovered) 2 Modules: | an v
| | findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) test.ps] | Untitled14.ps1*(Recovered) Untitled15.ps1* x rame

1 SregistryPath = "HKLM:\SOFTWARE\Microsoft\Windows\Currentversion’

2 $valueName = 'CommonFilesDir'

3 Add-AppvClientConnectionGroup

4 Svalue = Get-TtemPropertyValue -Path SregistryPath -Name SvalueName Add-ApevClientPackage

5

6 Write-Host "'CommonFilesDir': $value” Add-AppvPublishingServer

Add-AppxPackage
Add-AppxProvisionedPackage
Ade-AppxVolume
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrolimentPolicyServer
Add-Computer

Add-Content
Add-DnsClientDohServerAddress
Add-DnsClientNrptRule
Add-DtcClusterTMMapping
Add-EtwTraceProvider

PS5 C:\WINDOWS\system32> $registryPath = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion"

$valueName = "CommonFilesDir ' Ad-Histery
Add-InitiztoridToMaskingSet
Add-lobTrigger

$value = Get-ItemPropertyValue -Path $registryPath -Name $valueName

Write-Host "’CommonFilesDir”: Svalue” Add-KdsReotKey

. . . . - AAdd-LocalGrouphember
CommonFilesDir rogram Files\Common Files
Add-Member
 Ps c:\WINDOWS\system32» AAdd-MpPreference

Add-MpPreference
Add-NetEventNetworkAdapter
Add-NetEventPacketCaptureProvider
Add-NeteventProvider
Add-NeteventVFeRrovider
Add-NetEventVmNetworkadapter
Add-NetEventvmSwitch
Add-NetEventVmSwitchProvider

Add-NetEventWRPCaptureProvider

Ln 10 Col 25 100% J

In this example, we retrieve the value of the ‘CommonFilesDir' under the
'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion' key using the
Get-ltemPropertyValue cmdlet. The value is then displayed using the Write-Host cmdlet.

www.alexandrumarin.com 118

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-itemproperty?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-itempropertyvalue?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-host?view=powershell-7.3
http://www.alexandrumarin.com

Retrieving Specific Registry Keys and Values

When working with the Registry, you may often need to retrieve specific keys and values
based on your requirements. PowerShell provides various techniques to retrieve specific
registry information.

Retrieving All Subkeys of a Registry Key:

SregistryPath = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion'
Ssubkeys = Get-Childltem -Path SregistryPath

foreach (Ssubkey in Ssubkeys) {
Write-Host "Subkey: $(Ssubkey.PSChildName)"

B Administrator: Windows PowerShell ISE - [u] X
File Edit View Tools Debug Add-ons Help
A = R B » b ® | 8 500 f (.
| | Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled4 ps1*(Recovered) Untitled6.ps1(Recovered) Commands X X |
| [Unitled ps1"(Recovere) | Untitieds.ps1*(Recovered) | untitiedg.ps1*(Recovered) | Untitied10.ps1"(Recovered) O vodues: A . |
| findapplicationuninstallkeys.ps1 Untitled12.ps1*(Recovered) testpsl | Untitled14.ps1*(Recavered) Untitled15.ps1* X M

1 $registryPath = 'HKLM:\SOFTWARE‘\Microsoft\Windows\CurrentVersion'

2

3 $subkeys = Get-ChildItem -Path SregistryPath Add-AppvClientConnectionGroup

4 . Adc-AppvClientPackage

5 oforeach ($subkey in Ssubkeys) {)

6 Write-Host "Subkey: $(Ssubkey.PSChildName)" Add-AppvPublishingServer

71} Add-AppxPackage

8

Add-AppxProvisionedPackage
Add-Appxvolume
Add-BCDataCachextension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrol mentPolicyServer
Add-Computer
Add-Content
Add-DnsClientDohServeraddress
Add-DnsClientNratRule
Add-DtcClusterTMMapping
= Add-EtwTraceProvider

TouchKeyboard Add-History

tﬂnstﬂ 1 Add-InitiatoridToMaskingSet

: UpdatetiealthTools Add-JobTrigger
v Hsfatelﬂ atform Ade-KisRaatkey
erPictureChange Add-LocalGroupMember
2 Add-Member

Add-MpFreference
Add-MpPreference
ok Levd] T Add-NeteventNetworkAdapter
G Add-NetEventPacketCaptureProvider
Add-NeteventProvider
Add-NetEventVFeRrovider
:} :g\c;.frTabManager Add-NeteventvmNetworkAdapter

d Add-NetEventVmSuwitch
Add-NetEventVmSwitchProvider
Add-NetEventWrPCaptureProvider
Add-NetiPHttpsCertBinding

PS5 C:\WINDOWS\system32>

Ln 181 Col 25 100% J

In this example, we use the Get-Childltem cmdlet to retrieve all the subkeys under the
'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion' key. We then iterate through each
subkey and display its name using the Write-Host cmdlet.

www.alexandrumarin.com 119

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
http://www.alexandrumarin.com

Accessing Registry Values in Different Hives

The Windows Registry is divided into different hives or root keys, each serving a specific

purpose. PowerShell allows you to access registry values across these hives.

Retrieving a Registry Value from HKEY_CURRENT_USER:

SvalueName = 'IsAvailable'

Write-Host "Cortana is Available: Svalue"

Svalue = Get-ItemPropertyValue -Path SregistryPath -Name SvalueName

SregistryPath = 'HKCU:\Software\Microsoft\Windows\CurrentVersion\Cortana'

B Administrator: Windows PowerShell ISE
File Edit View Iools Debug Add-ons Help

OEH4& =Ba »9 » & B | |8 | Fool ..
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recavered) Untitled3.ps1*(Recovered) Untitled4.ps1*(Recovered) Untitled6.ps1*(Recovered)
| Untitled7.ps1*(Recovered) | Untitled8.ps1*(Recovered) | Untitledd.ps1*(Recovered) | Untitled10.ps1*(Recovered)
| findapplicatienuninstallkeys.ps1 Untitled12.ps1*(Recovered) test.psl | Untitled14.ps1"(Recovered) Untitled15.ps1*
1 SregistryPath = "HKCU:\Software\Microsoft\Windows\CurrentVersion\Cortana’

2 SvalueName = 'IsAvailable’

3

4 $value = Get-TtemPropertyValue -Path SregistryPath -Name SvalueName
5

6 Write-Host "Cortana is Available: $walue”

PS5 C:\WINDOWS\system32» $registryPath = 'HKCU:\Software\Microsoft\Windows\CurrentVersion\Cortana'
SvalueName Availab

| svalue = Get-TtemPropertyValue -Path SregistryPath -Name $valueName
Write-Host "Cortana is Available: $value”

i Cortana is Avail

PS5 C:\WINDOWS\system32>

| Completed

Commands X
Modules: | All
Mame:

Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPUblishingServer
Add-ApprPackage
Add-AppxProvisionedPackage
Add-AppxVolume
Add-BCDataCachextension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrolmentFolicyServer
Add-Computer

Add-Content
Add-DnsClientDohServerAddress
Add-DnsClientNrptRule
Add-DtcClusterTMMapping
Add-EtwTraceProvider
Add-History
Add-InitiatorldToMaskingSet
Add-JobTrigger

Add-KdsRootKey
Add-LocalGroupMember
Add-Member

Add-MpPreference
Add-MpFreference
Add-NeteventNetworkadapter
Add-NeteventPackstCaptureFrovider
Add-NeteventProvider
Add-NeteventVFPProvider
Add-NetEventVmNetworkAdapter
Add-Neteventvmsiitch
Add-NetEventVmSwitchProvider
Add-NeteventWrPCaptureProvider
Add-NetiPHtipsCertginding

In7 Col1

100%. J

In this example, we retrieve the value of 'IsAvailable’ under the

'HKCU:\Software\Microsoft\Windows\CurrentVersion\Cortana' key. The value represents the

enablement of Cortana on the current user.

By combining the Get-ltemProperty cmdlet with different registry paths and value names,
you can easily read registry values from various hives, such as HKEY_LOCAL_MACHINE,

HKEY_USERS, and more.

www.alexandrumarin.com

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-itemproperty?view=powershell-7.3
http://www.alexandrumarin.com

Modifying Registry Values

In PowerShell, the Set-ltemProperty cmdlet is widely used to modify registry values. It allows
you to update the value of a specific registry key or create a new value if it doesn't exist.

Setting a Registry Value:

SregistryPath = 'HKCU:\Software\Mozilla\Firefox\Default Browser Agent'
SvalueName = 'CurrentDefault’
SnewValue = 'chrome'

Set-ltemProperty -Path SregistryPath -Name SvalueName -Value SnewValue

In this example, we use the Set-ltemProperty cmdlet to set the value of 'CurrentDefault’
under the 'HKEY_CURRENT_USER\Software\Mozilla\Firefox\Default Browser Agent' key. The
value is updated to 'chrome'. If the value doesn't exist, it will be created.

Creating New Registry Keys and Values

When working with the Registry, you may need to create new keys and values to store
configuration information. PowerShell provides convenient cmdlets for creating registry keys
and values such as New-Item.

Creating a New Registry Key and Value

SregistryPath = 'HKCU:\Software\MyApp'
SvalueName = 'Setting'
SvalueData = 'Enabled'

New-Item -Path SregistryPath -Force | Out-Null
New-ItemProperty -Path SregistryPath -Name SvalueName -Value SvalueData

In this example, we use the New-Item cmdlet to create a new registry key
'HKCU:\Software\MyApp' if it doesn't exist. We then use the New-ItemProperty cmdlet to
create a new value 'Setting' under the 'HKCU:\Software\MyApp' key and set its value to
‘Enabled'.

www.alexandrumarin.com 121

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-itemproperty?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-itemproperty?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-item?view=powershell-7.3
http://www.alexandrumarin.com

Updating and Deleting Existing Registry Values

In addition to setting new values, PowerShell allows you to update and delete existing
registry values by using the Set-ltemProperty cmdlet.

Updating an Existing Registry Value:

SregistryPath = 'HKCU:\Software\MyApp'
SvalueName = 'Setting'
SnewValue = 'Disabled'

Set-ltemProperty -Path SregistryPath -Name SvalueName -Value SnewValue

In this example, we use the Set-ltemProperty cmdlet to update the value of 'Setting' under
the 'HKCU:\Software\MyApp' key. The value is changed to 'Disabled'.

Deleting a Registry Value

Cases where you need to delete a certain registry value will certainly show, so it is important
to understand that it can be easily done with the Remove-ltemProperty cmdlet.

SregistryPath = 'HKCU:\Software\MyApp'
SvalueName = 'Setting'

Remove-ltemProperty -Path SregistryPath -Name SvalueName

In this example, we use the Remove-ltemProperty cmdlet to delete the 'Setting' value under
the 'HKCU:\Software\MyApp' key.

www.alexandrumarin.com 122

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-itemproperty?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-itemproperty?view=powershell-7.3
http://www.alexandrumarin.com

Enumerating Registry Keys and Values

Understanding how to navigate the registry and retrieve data from it is essential for
managing and troubleshooting Windows systems. We will go over how to list subkeys and
values, perform recursive enumeration, and filter and sort registry data.

Getting a List of Subkeys and Values within a Registry Key

When working with the registry, it's essential to be able to retrieve a list of subkeys and
values within a specific registry key. PowerShell provides us with the necessary cmdlets to
accomplish this task. Let's look at an example:

Listing subkeys and values within a registry key:

SregistryPath = "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\"

Get a list of subkeys
Ssubkeys = Get-Childltem -Path SregistryPath

Display the subkeys
foreach (Ssubkey in Ssubkeys) {
Write-Host "Subkey: $(Ssubkey.Name)"

}

Get a list of values
Svalues = Get-ItemProperty -Path SregistryPath

Display the values
foreach (Svalue in Svalues.PSObject.Properties) {
Write-Host "Value Name: §(Svalue.Name), Value: $(Svalue.Value)"

}

The variable SregistryPath is assigned the registry path
"HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall" which represents the
location where uninstall information for installed applications is stored in the Windows
Registry.

The Get-Childltem cmdlet is used to retrieve a list of subkeys (applications) under the
specified SregistryPath. Each subkey represents an installed application.

A foreach loop is used to iterate through the subkeys and the Write-Host cmdlet is used to
display the name of each subkey.

www.alexandrumarin.com 123

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-host?view=powershell-7.3
http://www.alexandrumarin.com

The Get-ltemProperty cmdlet is used to retrieve a list of values associated with the
SregistryPath. These values contain information about the installed applications.

Another foreach loop is used to iterate through the properties of the Svalues object. Each
property represents a value associated with the registry path.

Inside the loop, the Write-Host cmdlet is used to display the name and value of each
property.

B Administrator: Windows PowerShell ISE - o X
File Edit View Iools Debug Add-ons Help
e d 4 o » 9 | BE ® | 8 BmoO) & (@,
| Untitled1.ps1*(Recovered) UntitledZ.ps1*(Recovered) Untitled3.ps1*{Recovered) copyfolderpsl Untitledd.ps1*(Recovered) Commands X x
| Untitleds.ps1*(Recovered) Untitled6.ps1*(Recoverad) Untitled7.ps1*(Recovered) UntitledB.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Modules: | All M
| Untitied13.ps1"(Recovered) Untitled16.ps1"(Recovered) AppFinder.ps1 Untitled17.ps1"(Recovered) Untitled18.ps17(Recavered) —
| get-azpolicies.psT Untitled19.ps1*(Recovered) Untitled20.ps17(Recovered) Untitled21.ps1*(Recovered) Untitled22 ps1* X
1 SregistryPath = "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\" A
2 Add-AppProvisionedSharedPackageContainer
3 ¥ Get a Tlist of subkeys -)
4 $subkeys = Get-ChildTtem -Path SregistryPath Add-AppSharedPackageContainer
5 Add-AppvClientConnectionGroup
& # Display the subkeys e
7 =foreach (Ssubkey in Ssubkeys) [Add-AppvClientPackage
8 Write-Host "Subkey: $($subkey.Name)" Add-AppvPublishingServer
13 Add-AppxPackage

11 # Get a list of values
12 Svalues = Get-TtemProperty -Path $registryPath

Add-AppxProvisionedPackage
Add-AppxVolume

13 # bisglay the values Add-AzADAppPermission
15 =foreach (Svalue in Svalues.PSObject.Praperties) { - R Add-AzADGroupMember

176 Write-Host "Value Name: S(Svalue.Name), Value: $(Svalue.Value) Add-AzAnalysisServicesAccount

18 Add-AzApiManagementApToGateway
Add-AzApilManagementApiToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplicationGat

E271FB42-267D-48A3-A1E9- ayAuthenticationCertificate

ystem3z»

Completed

findows\CurrentVers

E2?82DFA3-E641-43F5-99E1-0FDF: 1
E4CAB622-2362-4A7D-A05E-4083AABBDBCD}
A 3A-BOC.

7 184 - AE6| FOl

6-8E49-4D42-AC99-10B1 6
\{EB9C2C6D-BD5B-48D3-BFF3-12F16D41!
\{EBDC8016-2620-404C-A655-4F6A7BI
EES55DEAE-ECDD-4ADD-AABS - 23DE848B0996 1
F207B40D-1DB3-42FB-9DB7-D761C4F1076E }
F413845C-F68A-49F4-B275-
\{F5F08012-912E-437D-B660-
\{F771864E-C963-4DA3-8

F9C5C994-F6B9-4D75 -
FECAFEB5-8DOE-4AE4-BFA

Add-AzApplication
Add-AzApplication

atewayt

2yt

2y

2y

SackendAddressPool
BackendHitipSetting

ayCustomError

FrontendIPConfig
FrontendPort
HitpListener

ayHitpListenerCustomeror

PConfiguration
Listener
PrivateLinkConfiguration
ProbeCanfig
RedirectConfiguration

Add-AzApplication

Ln 13 Col 1

utingRule
RewriteRuleSet

100%.

Recursive Enumeration of Registry Keys

Sometimes, we need to enumerate registry keys recursively, traversing through multiple
levels to retrieve information. PowerShell provides a way to achieve this by using recursive

functions. Let's see an example:

Recursively enumerating registry keys:

function Enumerate-RegistryKeys(Spath) {
Ssubkeys = Get-Childltem -Path Spath

www.alexandrumarin.com

124

http://www.alexandrumarin.com

foreach (Ssubkey in Ssubkeys) {
Write-Host "Subkey: $(Ssubkey.Name)"

Recursively call the function to enumerate subkeys
Enumerate-RegistryKeys -Path Ssubkey.PSPath

}

Start recursive enumeration from the specified registry path
Enumerate-RegistryKeys -Path "HKLM:\Software"

B Administrator: Windows PowerShell ISE - o
File Edit View Tools Debug Add-ons Help
N & 4 B » L ® & 500 @3-
| | Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1"(Recovered) copyfolderpsl Untitleds,ps"(Recovered) Commands X
| Untitled5.ps1*(Recovered) Untitled6,ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Modules: | All "
| Untitled13.ps1*(Recovered) Untitled16.ps1*(Recovered) AppFinder.ps1 Untitled17.ps1*(Recovered) Untitled18.ps1*(Recovered) Mame
| get-azpolicies,ps1 Untitled19.ps1"(Recovered) Untitled20.ps17(Recavered) Untitled21.ps1"(Recovered) Untitied22 psT1" X
1 Efunction Enumerate-RegistryKeys(Spath) { A"
2 és.bkeis(: GEE—CM_ 1dr —Pa;.h{spath Adg-AppProvisionedSharedPackageContainer
3 oreach ($subkey in bkeys. _ _
A Write_Host “Subl S($subley. Name)™ Add-AppSharedPackageContainer
5 Add-AppvClientConnectionGroup
6 # Recursively call the function to enumerate subkeys .
7 Enumerate-RegistryKeys -Path Ssubkey.PSPath Add-AppvClientPackage
8 Add-AppvPublishingServer
13 H Add-AppxPackage
11 # Start recursive enumeration from the specified registry path Add-AppxProvisionedPackage
12 Enumerate-RegistryKeys -Path "HKLM :\Software” Adg-AppxVolume
13

Add-AzADAppPermission
Add-AzADGrougMember
Ado-AzARaIySisServicesAccount
Adg-AzhpiManagementapToGateway
Add-AzApiManagementApiTaProduct
Adg-AzApiManagementProguctToGroup
STy L E " ST L S s S UPILEL 5 11Ls | 1P UG REg TS T earpp Ado-AzApIManagementRegion
Subkey: Add-AzApiManagementUserToGroup
ok / 7 Ada-AzApplicationGatewayAuthenticationCertificate
Add-AzApplicationGatewayBackendAddressPaol
Adg-Azapplicationt
Ado-AzapplicationG

yBackendHtipSetting

etup\RegistrationDomains Add-AzApplicationG:
wer Management
Add-AzApplicationG:

Add-AzApplicationG:

fHttpListener
yHitpListenerCustomError
iPConfiguraticn

Listener
Default

Default yPrivateLinkConfiguration

Add-AzApplicationGat
Add-AzApplicationGatewayRedirectConfiguration

yProbeConfig

jRequestRoLtingRule

Subkey:

Subkey:

Subkey: i ¥ ings\Runtime\Graphi
Subkey:

Subkey: {

Subkey: OCAL_MACHINE\Sof twar e\ATT Settings

writeRuleSet

Ln 662 Col 25

100%

If we look closely, we can see that we define a function called Enumerate-RegistryKeys,
which takes a registry path as a parameter. The function's purpose is to recursively
enumerate and display the names of all subkeys (child items) under the specified registry
path.

Within the function, we use the Get-Childltem cmdlet with the -Path parameter to retrieve the
subkeys under the specified registry path, and the result is stored in the Ssubkeys variable.
Following that, we iterate through each subkey in the Ssubkeys collection using a foreach
loop. Using the Write-Host cmdlet, we display the name of the current subkey during each
iteration.

The recursive call within the function itself is the interesting part. Within the loop, we use
Enumerate-RegistryKeys again, passing the subkey's PSPath (provider-specific path) as the

www.alexandrumarin.com 125

http://www.alexandrumarin.com

new path argument. This allows us to go deeper into the registry hierarchy and continue
enumerating subkeys until no more child items are found.

Finally, we begin the recursive enumeration outside the function by calling
Enumerate-RegistryKeys and specifying the starting registry path as "HKLM:Software." This
starts the process of listing all subkeys and their subkeys under the "HKLM:Software"
registry path recursively.

Filtering and Sorting Registry Data

To efficiently work with registry data, it's helpful to filter and sort the information based on
specific criteria. PowerShell offers flexible filtering and sorting capabilities for registry data.
Let's explore an example:

Filtering and sorting registry data:

SregistryPath = "HKLM:\Software\Microsoft\Windows\CurrentVersion"

Filter subkeys based on a specific pattern
Ssubkeys = Get-Childltem -Path SregistryPath | Where-Object { S_.Name -like "*Installer*" }

Sort subkeys alphabetically
Ssubkeys = Ssubkeys | Sort-Object -Property Name

Display the filtered and sorted subkeys
foreach (Ssubkey in Ssubkeys) {
Write-Host "Subkey: $(Ssubkey.Name)"

}

The variable SregistryPath is assigned the value
"HKLM:\Software\Microsoft\Windows\CurrentVersion", which represents the registry path
we want to explore.

The Get-Childltem cmdlet is used to retrieve all the subkeys under the SregistryPath path.

The Where-Object cmdletis used to filter subkeys based on a particular pattern. The pattern
in this case is "Installer,’ which means any subkey name that contains the word "Installer."

The filtered subkeys are then sorted alphabetically using the Sort-Object cmdlet with the
-Property Name parameter. This ensures that the subkeys are displayed in a sorted order
based on their names.

www.alexandrumarin.com 126

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/sort-object?view=powershell-7.3
http://www.alexandrumarin.com

Finally, a foreach loop is used to iterate through the filtered and sorted subkeys. The

Write-Host cmdlet is used to display the name of each subkey.

Administrator: Windows PowerShell ISE

file Edit View ook Debug Add-ons Help

0@ B a8 » b - oot
| | ntitled1.ps1*(Recovered) Untitled2.ps1*{Recovered) Untitied3,ps1*(Recovered) copyfolder,psi Untitledd,ps1*(Recovered)
‘ Untitled5.ps1*(Recovered) Untitledf.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1
| Untitled13.ps1*(Recovered) Untitled16.ps1*(Recovered) AppFinder.ps1 Untitled17.ps1*(Recovered) Untitled18,ps1*(Recovered)
| get-azpolicies.ps1 Untitled19.ps1”(Recovered) Untitled20.ps1%{Recovered) Untitled21.ps1*(Recovered) Untitled22,ps1*
SregistryPath = "HKLM:\Software\Microsoft\Windows\CurrentVersion"

Filter subkeys based on a specific pattern
Ssubkeys = Get-ChildTtem -Path SregistryPath | Where-OGbject { S_.Name -like "*Installer=" }

Sort subkeys alphabetically
Ssubkeys = Ssubkeys | Sort-Object -Property Name

GO R W

Display the filtered and sorted subkeys
10 Sforeach (Ssubkey in Ssubkeys) {
It \Write-Host "Subkey: $(Ssubkey.Name)"
H

indows\CurrentVersion"

| Where-Object { $_.Name -like "*Installer=" }

Sort subkeys alphabeticall
Ssubkeys = $subkeys | Sort-Object -Property Name

Display the filtered and sorted subkeys

foreach ($subkey in $subkeys) {
Write-Host "Subkey: $($subkey.Name)

1

H

ChildIten

DCAL_MACHINE\Sof twar e\Microsoft\Windows\CurrentVersion\Device Installer
LOCAL_MACHINE\Softwar e\Microsoft\Windows\CurrentVersion\GameInstaller
DCAL_MACHINE\Sof twar e\Microsoft\Windows\CurrentVersion\Installer
Subkey: LOCAL_MACHINE\Softwar e\Microsoft\Windows\CurrentVersion\LanguageComponentsInstaller

PS5 C:\WINDOWS\system3:

- O X
Cammands X X
Modules: | All .

Name:

A

Add-AppProvisionedsharedPackageContainer
AAdd-AppSharedPackageContainer
Add-AppvClientConnectionGroup
AAdd-AppvClientPackage

Add-AppvPublishingServer

Add-AppxPackage

Add-AppxProvisionedPackage

Add-AppxVolume

Add-AzADAppPermission
Add-AzADGroupMember
AAdd-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApiToProduct
Add-AzApiManagementProductToGroup
Adg-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplicationGatewayAuthenticationCertificate
AAdd-AzApplicationGatewayBackendAddressPool
AAdd-AzApplicationGatewayBackendHttpSetting
AAdd-AzApplicationGatewsyBackendsetting
Add-AzApplicationGatewayCustomEror
Add-AzApplicationGatewayFrontendIPCenfig
tewayFrontendPort
AAdd-AzApplicationGatewayHttolistener
AAdd-AzApplicationGatewayHttplistenerCustomError
Add-AzApplicationGatewaylPConfiguration
AAda-AzApplicationGatewayListener
Add-AzApplicationGatewayPrivatelinkConfiguration
AAdd-AzApplicationGatewayProbeConfig ‘
Add-AzApplicationGat

dd-AzApol

ayRedirectConfiguration

nGaf utingRule
Add-AzApplicationGate

ayRewriteRuleSet

Ln 27 Col 25 100% J

www.alexandrumarin.com

127

http://www.alexandrumarin.com

Importing and Exporting Registry Data

We will learn how to export registry keys and values to a.reg file, import registry data from
a.reg file, and backup and restore registry settings using PowerShell. Let us now delve into
the subject.

Exporting Registry Keys and Values to a .reg File

Understanding the .reg File Format

Before we can export registry keys and values, we must first understand the.reg file format.
.reg files are plain text files that contain registry settings. They are widely used for registry
backup, migration, and sharing. A.reg file's structure is made up of key-value pairs, where
keys represent registry paths and values store specific registry data.

Exporting a Single Registry Key

Since there is no direct cmdlet in PowerShell to export registry keys to .reg files, we can still
achieve the desired result by using the reg.exe tool, a command-line utility provided by
Windows. This tool allows us to manipulate registry keys from the command line.

SregistryPath = "HKLM:\Software\MyApp"
SexportPath = "C:\Backup\MyApp.reg"

Export the registry key using reg.exe tool
reg export "SregistryPath" "SexportPath" /y

The reg export command is used in this code to export the registry key specified in the
SregistryPath variable to the.reg file specified in the SexportPath variable. The /y switch at
the end suppresses confirmation prompts, allowing the command to run silently.

This way, we can export the registry key and its subkeys to the "C:\Backup\MyApp.reg" file
without using any additional modules.

www.alexandrumarin.com 128

http://www.alexandrumarin.com

Exporting Multiple Registry Keys

In some scenarios, you may need to export multiple registry keys simultaneously.We can
also use the reg.exe utility to achieve this.

SregistryPaths = @(
"HKLM:\Software\MyApp1",
"HKLM:\Software\MyApp2",
"HKLM:\Software\MyApp3"

)
SexportPath = "C:\Backup\MultipleApps.reg"

SexportData = foreach (Spath in SregistryPaths) {
Export the registry key using reg.exe tool
SexportData = reg export "Spath" /y

}

SexportData | Out-File -FilePath SexportPath

We loop through each registry path in the SregistryPaths array. We use reg export to export
the registry key to a temporary variable SexportData for each path. The /y switch is used to
disable confirmation prompts.

After exporting all registry keys, we use Out-File to save the collected data to the
"C:\Backup\MultipleApps.reg" file. The output is a.reg file that contains the exported data for
all specified registry keys.

Exporting Selected Registry Values

Sometimes, you may only need to export specific registry values from a key rather than the
entire key. Let's see how we can use reg.exe for this.

SregistryPath = "HKLM:\Software\MyApp"
SexportPath = "C:\Backup\SelectedValues.reg"
SselectedValues = "Value1", "Value2" # Specify the values to export
SregExportData = @{}
foreach (SvalueName in $SselectedValues) {
Get the value data using reg.exe tool
SregValueData = reg query "SregistryPath" /v "SvalueName"
SregExportData[SvalueName] = SregValueData -replace "*.*\s\s"

}

www.alexandrumarin.com 129

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/out-file?view=powershell-7.3
http://www.alexandrumarin.com

SregExportData | Out-File -FilePath SexportPath

We loop through each value name in the SselectedValues array. We use reg query to get the
data for each value. The output of the reg query is processed using regex to extract the value
data, which is then stored in the SregExportData hashtable.

After exporting all of the selected values, we use Out-File to save the collected data to the
"C:\Backup\SelectedValues.reg" file. The result is a.reg file containing the exported data
from the registry key's specified values.

Importing Registry Data from a .reg File

Importing registry data from a .reg file allows you to apply preconfigured settings, restore
backups, or deploy configurations to multiple systems. PowerShell provides convenient
cmdlets to facilitate the import process and automate registry modifications.

Importing Registry Data

Because there is no dedicated cmdlet for importing registry files with PowerShell, we can
also rely on the reg.exe utility.

SregFile = "C:\Backup\MyApp.reg"
& reg import SregFile

The call operator (&) is used to execute the reg.exe command with the "import" argument
and the path to the.reqg file. The contents of the.reg file will be imported into the Windows
registry.

Please keep in mind that changing the registry may necessitate elevated privileges (Run as
Administrator). When making changes to the registry, always exercise caution because they
can have an impact on system behavior.

www.alexandrumarin.com 130

http://www.alexandrumarin.com

Importing Selected Registry Settings

In some cases, you may only want to import specific settings from a .reg file. PowerShell
provides flexibility in selecting and applying specific registry keys and values.

SregFile = "C:\Backup\SelectedSettings.reg"
SselectedValues = "Value1", "Value2" # Specify the values to import

SregData = Get-Content -Path SregFile | Select-String -Pattern SselectedValues
SregData | ForEach-Object { & reg import S_.Line }

In the preceding example, we define the path to the.reg file as SregFile and the desired
values to import as $selectedValues. The Get-Content cmdlet reads the.reg file, and
Select-String selects the lines that contain the selected values. For each line of the SregData,
we use the call operator & to run reg.exe with the "import" argument. Only the selected
registry settings from the.reg file will be imported into the Windows registry.

Applying Registry Settings Safely

When importing registry data, it's crucial to handle the process with care to avoid unintended
modifications or conflicts. Here are some best practices to ensure a safe import:

e Backup your registry: Make a backup of your current registry settings before
importing any registry data so that you can easily revert to a known good state if
necessary.

e Review the .reg file: Examine the contents of the.reg file carefully to understand the
changes it will make to the registry.

e Test in a controlled environment: Test the import in a controlled environment if
possible before applying the changes to production systems.

e Run with administrative privileges: To make changes to the registry, ensure that the
PowerShell session used for importing has administrative privileges.

Using PowerShell to Backup and Restore Registry Settings

It is critical to back up and restore registry settings in order to maintain system stability and
recover from unexpected changes or errors. PowerShell includes powerful cmdlets for
automating backup and restoration, allowing you to protect critical registry configurations.

Backups of registry hives or specific keys can be created using PowerShell, providing a
reliable snapshot of the registry at a specific point in time. If necessary, these backups can
be used to restore the registry to a known good state. As previously stated, using the export

www.alexandrumarin.com 131

http://www.alexandrumarin.com

method, you can easily create a full registry backup. You could also make a partial registry
backup by doing something like:

Creating a Partial Registry Backup:

SbackupPath = "C:\Backup\SoftwareKeyBackup.reg"
SregKey = "HKLM\Software"

& reg export SregKey SbackupPath

In this example, we define the backup path SbackupPath, which will be used to save the
partial registry backup. We use reg.exe with the "export" argument to export the
"HKLM\Software" registry key to the specified SbackupPath in this modified code. This
allows you to concentrate on backing up specific registry sections.

PowerShell facilitates the restoration of registry backups to revert the registry to a previous
state in the event of system issues or unwanted changes. This can be accomplished by
using the reg.exe utility, as demonstrated in the preceding subchapters' examples.

SbackupPath = "C:\Backup\RegistryBackup.reg"

& reg import SbackupPath

In the above example, we are using reg.exe with the "import" argument to import the registry
backup from the specified SbackupPath.

Backup rotation and management practices are recommended to ensure efficient storage
use and a manageable backup strategy. This entails creating new backups on a regular basis

while removing older backups based on a defined retention policy.

Implementing Backup Rotation:

SbackupFolderPath = "C:\Backup"
SmaxBackups = 5

SbackupFiles = Get-Childltem -Path SbackupFolderPath -Filter "*.reg" | Sort-Object
-Property LastWriteTime -Descending

if (SbackupFiles.Count -ge SmaxBackups) {
SoldBackups = SbackupFiles | Select-Object -Skip SmaxBackups
SoldBackups | ForEach-Object {
SregFile = S_.FullName

www.alexandrumarin.com 132

http://www.alexandrumarin.com

& reg import SregFile
Remove-ltem -Path SregFile -Force
}
}

Perform a new backup

SbackupPath = Join-Path -Path SbackupFolderPath -ChildPath
"RegistryBackup_$(Get-Date -Format 'yyyyMMddHHmmss').reg"
& reg export "HKLM\" SbackupPath

The variable $backupFolderPath specifies the folder path where the registry backups will be
stored, and the variable SmaxBackups specifies the maximum number of backups to keep.
The script retrieves a list of backup files in the specified backup folder that match the filter
"*.reg" and sorts them in descending order based on their LastWriteTime. If the number of
backup files exceeds or equals the maximum number of allowed backups (SmaxBackups),
the script removes the oldest backups to make room for a new backup.

The script iterates through the oldest backups (those that are older than the maximum
allowed). The script uses reg.exe with the "import" argument to restore the registry settings
from each old backup file.

Following the successful import of the old backup, the script deletes the backup file from the
system because it is no longer required. Finally, the script runs reg.exe with the "export"
argument to create a new backup of the registry. To ensure uniqueness and to avoid
overwriting existing backups, the new backup is saved to a new file with a timestamp.

www.alexandrumarin.com 133

http://www.alexandrumarin.com

Registry Security and Permissions

Understanding Registry Security Principles

The Windows Registry is an essential component of the operating system, storing
configuration settings and information required for applications and system services to
function properly. To ensure the integrity, confidentiality, and availability of registry data as a
critical system resource, it is critical to understand the underlying principles of registry
security.

Registry Access Control Lists (ACLSs)

Access Control Lists (ACLs) protect registry keys and subkeys by defining permissions and
access rights for users and groups. ACLs are made up of access control entries (ACEs) that
specify who can do what with registry keys, such as reading, writing, or deleting.

Security Identifiers (SIDs)

Within Windows, SIDs are used to uniquely identify user accounts, groups, and security
principals. SIDs are used in ACLs to specify which users or groups have access to or
modification of registry keys.

Built-in Registry Hives and Keys

The Windows Registry is made up of several built-in hives, such as HKEY_LOCAL_MACHINE
(HKLM) and HKEY_CURRENT_USER (HKCU), which represent various parts of the registry
hierarchy. Each hive contains keys and subkeys that store configuration data for various
system, application, and user profile aspects.

Inheritance and Propagation of Permissions

Permissions in the registry can be passed down from parent keys to child keys, allowing for
consistent access control across related registry paths. Changes to a parent key's
permissions can be propagated down to its child keys, ensuring consistent security settings.

www.alexandrumarin.com 134

http://www.alexandrumarin.com

Principle of Least Privilege

The principle of least privilege advocates granting users or processes only the permissions
required to carry out their intended tasks. Access to registry keys should be restricted based
on the principle of least privilege to reduce security risks and the impact of potential attacks.

Modifying Registry Permissions with PowerShell

It is critical to manage registry permissions in order to restrict access and prevent
unauthorized changes to critical registry keys. PowerShell includes a set of cmdlets for
effectively manipulating registry permissions, allowing administrators to enforce security
policies and grant or revoke access to specific keys or hives.

Granting Access to a Registry Key:

SregistryKey = "HKLM:\SOFTWARE\MyCompany"
Sidentity = "DOMAIN\UserName"
SaccessRights = "FullControl"

Srule = New-Object System.Security.AccessControl.RegistryAccessRule(Sidentity,

SaccessRights, "Containerinherit,0Objectinherit", "None", "Allow")

Skey = Get-ltem -LiteralPath SregistryKey
Sacl = Skey.GetAccessControl()
Sacl.AddAccessRule(Srule)

Set-Acl -Path SregistryKey -AclObject Sacl

www.alexandrumarin.com

135

http://www.alexandrumarin.com

>

File Edit View Tools Debug Add-ons Help

SR = I o » L, B = &g 5006 |®.
| Untitled1 ps1"(Recavered) Untitled2.ps1*(Recoverad) Untitled3.ps17(Recovered) copyfolderpsi Untitled4.ps1*{Recovered) Commands X x
| Untitled5.ps1*(Recovered) Untitledt.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Modules: | All "
| Untitled13.ps1*(Recovered) Untitled16.ps1*(Recovered) AppFinder.ps1 Untitled17.ps1”(Recovered) Untitled 18.ps1"(Recovert g
| get-azpolicies.pst Untitled19.ps1*(Recovered) Untitled20,ps1*{Recovered) Untitled21,ps1*{(Recovered) Untited22ps1® | £ic £ view Favortes Help
1 SregistryKey = "HKLM:\SOFTWARE\MyCompany"
2 Sidentity “VIPER\User " Compute\HKEY_LOCAL_MACHINE\SOFTWARE\MyCompany
3 Saccessfig “FullControl” 5> 7 MozillaPlugins Mame Type
2
5 Srule = New-Object System.Security.AccessControl.RegistryAccessRule($identity, SaccessRights, "ContainerInherit,ObjectInh MyApp ab] (Default) REG_S
H Notepad-+
7 Skey = Get-Ttem -LiteralPath SregistryKey 0BS Studio
8 $acl = Skey.GetAccessControl()
9 Sacl.AddAccessRule(Srule) Permissions for MyCompany X
10 Set-Acl -Path SregistrykKey -AclObject $acl
u Securty
Group or user names:
Account Unknown(5-1-15-3-1024-1065365936-128160471
82 CREATOR OWNER kit
82 SYSTEM |
b} User (viper\User) .
82 Administrators (Viper'Administrators) E
egistryKey = "HKLM :\SOFTWARE \MyCompany™ 2dd Remove
er
Pemissions for Liser Alow Deny
essControl.RegistryAccessRule($identity, $accessRights, "Container Err— 0
[$key = Get-Ttem alPath $registryK Read (m]
Sacl = Skey.GetAs ontrol O i
$acl. AddAcces &) Special permissions
Set-Ac] -Path $registryKey -Aclobject $acl
PS C:\WINDOWS\system32> For special permissions or advanced setings, dvanced
dlick Advance:
AR T
Add-AzApplicationGatewsyRewrtaRUleSet
Ln13 Col 25 100%

Completed

In this example, we specify the registry key SregistryKey to which access should be granted.
The user or group identity Sidentity and access rights SaccessRights, such as "FullControl,"
are defined. We create a new RegistryAccessRule object to represent the new access rule.
Using GetAccessControl, we retrieve the existing ACL for the key, add the new rule to the
ACL, and then apply the modified ACL using Set-Acl.

Revoking Access to a Registry Key:

Sacl = Get-Acl -Path "HKLM:\SOFTWARE\MyCompany"

SAccessRule = New-Object System.Security.AccessControl.RegistryAccessRule
("Viper\User", "FullControl", "Allow")

Sacl.RemoveAccessRuleAll(SAccessRule)

Sacl | Set-Acl -Path "HKLM:\SOFTWARE\MyCompany"

Let's break down the code step by step:

e Sacl = Get-Acl -Path "HKLM:\SOFTWARE\MyCompany": This line retrieves the
current Access Control List (ACL) of the specified registry key
(HKLM:\SOFTWARE\MyCompany) and assigns it to the Sacl variable.

www.alexandrumarin.com 136

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl?view=powershell-7.3
http://www.alexandrumarin.com

e SAccessRule = New-Object System.Security.AccessControl.RegistryAccessRule
("Viper\User", "FullControl", "Allow"): This line creates a new access rule using the
RegistryAccessRule class from the System.Security.AccessControl namespace. The
access rule grants "FullControl" permission to the "Viper\User" user or group, allowing
them to have complete control over the registry key.

e Sacl.RemoveAccessRuleAll(SAccessRule): This line removes all instances of the
specified access rule (SAccessRule) from the ACL (Sacl). This ensures that the
access rule is completely removed, regardless of how many times it might have been
added.

e Sacl | Set-Acl -Path "HKLM:\SOFTWARE\MyCompany": This line sets the modified
ACL (Sacl) back to the registry key (HKLM:\SOFTWARE\MyCompany) using the
Set-Acl cmdlet. It updates the permissions on the registry key with the modified ACL.

a
File Edit View Tools Debug Add-ons Help
b @ 3 & a » P @B = | 8| 500 &@0.
Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.psi Untitledd.ps1*(Recovered) Commands X x
UntitledS.ps1*(Recovered) Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Modules: | Al “
Untitled13.ps1*(Recovered) Untitled16.ps1*(Recovered) AppFinder.psi Untitled17.ps1*(Recavered) Unitied 18 051" (Recovery o
get-azpolicies.psT Untitled19.ps1~(Recovered) Untitled20.ps1"(Recovered) Untitled21,ps1(Recovered) Untitled22.ps1* X | Untitledi fie Edit view Favortes Help
1 geclicfeetoacliCeetNGHELN:NSORTWARE WY E opiany Compute HKEY_LOCAL MACHINE\SOFTWARE\MyCompany
3 SAccessRule = New-Object System.Security.AccessControl.RegistryAccessRule ("Viper\User”, "FullControl™, "Allow") i 5 23 Minnetonka Audio S || Mame Tpe
2
5 Sacl.RemoveAccessRuleAll($AccessRule) Permissions for MyCompany X REG_S:
6
7 Sacl | Set-Acl -Path "HKLM:\SOFTWARE\MyCompany" Securty
Group or user names
£ CREATOR OWNER
S8, 5YSTEM
SR Administrators (Viper\Administrators)
§i2 Users (Viper\Users)
Add Remove
Permissions for ALL
APPLICATION PACKAGES Alow Deny
PS C:\WINDOWS\system32> $acl = Get-Acl -Path "HKLM:\SOFTWARE\MyCompany" Full Cortrol 0O 0O
$SAccessRule = New-Object .Security. Access -RegistryAccessRule (“Viper\User”, "FullControl®, Read o
Special pemissions
$acl. RemoveAccessRuleA sRuTe)
$acl | Set-Acl -Path " \SOFTWARE \MyCompany "™
PS5 C:\WINDOWS\syst For special permissions or advanced settings. Advanced
click Advance
15 Bl voutaok
T WOWBERNede |
MyCompany
vl
Add-AzApplicationGatewayRewriteRuleSet
Completed Ln9 Col25 100%

Taking Ownership of Registry Keys

Taking ownership of registry keys grants you full control and the ability to modify
permissions for keys that you do not normally have access to. PowerShell includes the
cmdlets required to automate the process of acquiring ownership of registry keys.

Taking Ownership of a Registry Key:

www.alexandrumarin.com 137

http://www.alexandrumarin.com

SregistryKey = "HKLM:\SOFTWARE\MyCompany"

Skey = Get-ltem -LiteralPath SregistryKey
Sacl = Skey.GetAccessControl()
Sidentity = [System.Security.Principal. Windowsldentity]::GetCurrent().User

Sacl.SetOwner(Sidentity)
Set-Acl -Path SregistryKey -AclObject Sacl

>}
Fle Edit View Tools Debug Add-ons Help
I~ = I o » 4 = | 8 | B oo (.
[Untitied1.ps17(Recovered) Untitiedi2.ps1*(Recaverad) Untitiedi2.ps1*[Recovered) copyfolderpsT Untitiecit ps1*(Recaverad) Commands X x
[Untitieds ps1*(Recovered) Untitleds ps1*(Recovered) Untitled7.ps1%(Recovered) Untitied8.ps1*(Recovered) SearchapplicationGetUninstallKey.ps1 | Mogues: [an
[Unttiea 12 pst Recovered) Untitled16.ps1*[Recovered) AppFinderps1 Untitled 17 ps1*(Recovered) Untitled18.ps1*(Recovere :
| get-azpaiiciespsi || Untitied19.ps1"(Recovered) Untitied20.ps1(Recovered) Untitled21.ps1*{Recovered) Untitled22.ps1* X | Untited? L cut view Fevories Help
1 SregistryKey = "HKLM:\SOFTWARE\MyCompany™ Camputer\HKEY_LOCAL_ MACHINE\SOFTWARE\MyCampany
R e T
5 Sidentity = [System.Security.Principal.WindowsIdentity]::GetCurrent().User REG.S:
H sacl. setOwner ($identity) Ty
z Set-Acl -Path SregistryKey -AclObject $acl

Owner User (ViperUser) Change
Permissions | Auditing Effective Access
For additional ion, double-click a p entry. To modify permission entry, select the entry and click Edit (i available). =
Permission entries:
¥
$acl - Get-Ac] -Path \ \ Principal Type Access Inherited from Appliesto
Ty £ Users (VipenUsers) Alow Read MACHINEVSOFTWARE This key and subleys
§& Administrators (Viper\Administ.. Allow Full Cantrol MACHINE\SOFTWARE This key and subkeys
PR T A=) 82 5YSTEM Allow Full Control MACHINE\SOFTWARE This key and subkeys
t-Acl -Path LM 1\ SOFTWARE\MyCompany ™ S% CREATOR OWNER Allow Full Control MACHINE\SOFTWARE Subkeys only
E ; =
ey o T TS [EJALL APPLICATION PACKAGES Allow Read MACHINE\SOFTWARE This key and subkeys E
[E8] 5-1-15-3-1024-1065365936-1281... Allow Read MACHINE\SOFTWARE This key and subkeys
ralPath SregistryKey
sControl ()
[Systen. Security. Principal. WindowsIdentity] : :GetCurrent(
. SetOwner ($identity) pely
A YKey -Aclobject $acl Add Remove
Disable inheritance
(7] Replace sll child object permission entries with inheritable permission entries from this object
lule
Cancel App
——

Completed Ln 19 Col 25 100%

In this example, we specify the registry key SregistryKey for which we want to take
ownership. We retrieve the existing ACL for the key using GetAccessControl. We retrieve the
current user's identity using [System.Security.Principal. Windowsldentity]::GetCurrent().User.
We set the owner of the ACL to the current user's identity using SetOwner, and then apply the
modified ACL using Set-Acl.

www.alexandrumarin.com 138

https://learn.microsoft.com/en-us/dotnet/api/system.security.principal.windowsidentity?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.principal.windowsidentity.getcurrent?view=net-7.0
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl?view=powershell-7.3
http://www.alexandrumarin.com

Advanced Registry Techniques

In this chapter, we'll look at advanced PowerShell techniques for working with the Windows
Registry. We'll go over things like working with binary and multi-string values, remotely
enumerating registry keys and values, and using transactions for atomic registry operations.
These techniques will improve your ability to effectively manipulate and manage the
Windows Registry.

Working with binary and multi-string values

Binary values in the registry are used to store raw binary data, such as configuration settings,
encoded files, or encrypted data. To work with binary values, we need to understand how to
read and modify them using PowerShell.

Reading and Modifying Binary Values

We can use the Get-ltemProperty cmdlet to read a binary value from the registry by
specifying the path to the registry key and the name of the binary value. This returns the raw
binary data, which can then be processed or converted into a readable format.

Reading Binary Value:

SbinaryData = (Get-ltemProperty -Path 'HKLM:\Software\MyCompany' -Name
‘BinaryValue').BinaryValue

SreadableData = [System.Text.Encoding]::Unicode.GetString(SbinaryData)
Write-Host "Binary Value: SreadableData"

www.alexandrumarin.com 139

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-itemproperty?view=powershell-7.3
http://www.alexandrumarin.com

B Admin

Vindows PowerShell ISE
File Edit View Tools Debug Add-ons Help

ne d & B » P BB % |8 Boole@.

| Untitled1.ps1*(Recovered) Untitled2.ps1*{Recovered) Untitled3,ps1"(Recovered) copyfolder,psl Untitled4.ps1*(Recovered) Commands X

| Untitleds,ps1*(Recovered) Untitled6,ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Modules: | All

| Untitled13.ps1*(Recoversd) Untitled16.ps1*(Recovered) AppFinder.ps] Untitled17 ps1*(Recovered) Untitled18.p51*(Recoverad) Name:

| get-azpolicies.pst | Untitled19.ps1*(Recovered) Untitled20.ps1"(Recovered) Untitied21.ps1*(Recovered) Untitled22,ps1* X | Untitled23,ps1"
1 ShinaryData = (Get-TtemProperty -Path 'HKLM:\Software\MyCompany' -Name 'BinaryValue').BinaryValue Add-AzApplicationGatewsyRoutingRule
2 Sreadab'leData_: [System. Tei(t. Encoding]: :.Um code.Getstring($binaryData) Add-AzApplicationGatewaySs|Certificate
3 Write-Host "Binary Value: SreadableData’ ‘Ada-AzApplicationGatewaySsProfile
: i

File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\MyCempany

» 7 Minnetenka Audio § MName Type Data

Mozilla 5] (Defaul) REG_SZ (value not set)

> Bl mozilla.arg [BinaryValue REG_BINARY 323213213213213123213213 12321312
MozillaPlugins

Myhpp
Notepads+
0BS Studio
> QDBC
> OEM
SbinaryData = (Get-ItemProp > 7 OpenSSH

. Text.Encoding] : : Unicode. Gets:
Write-Host eadableData” OpenV/PN

Partner
Policies
PSAppDeployToolkit
Realtek
RegisteredApplicatic
RTLSetup

Setup

SOFTWARE
SyncIntegrationClier
Tebleau
TAP-Windows
TeamViewer
TechSmith
VideoL AN

VhMware, Inc.

Binary value: @)

voidtools
WOWs432Node
MyCompany

| n8 col2s

Completed

To change a binary value, run the Set-ltemProperty cmdlet with the path to the registry key,
the name of the binary value, and the new binary data. Before setting the value, make sure
the data is properly formatted as binary.

Modifying Binary Value:

SnewBinaryData = [System.Text.Encoding]::Unicode.GetBytes("New Binary Data")
Set-ltemProperty -Path 'HKLM:\Software\MyCompany' -Name 'BinaryValue' -Value
SnewBinaryData -Type Binary

Write-Host "Binary Value modified successfully”

www.alexandrumarin.com 140

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-itemproperty?view=powershell-7.3
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE

| File Edit View Tools Debug Add-ons Help

T = B » » B * |8 |Boo &0.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfalder.psl Untitledd ps1*{Recovered) Cammands X

| Untitleds.ps1*(Recovered) Untitleds.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Modules: | All

| Untitied13.ps1"(Recovered) Untitled16.ps1*(Recovered) AppFinder.ps] Untitled17.ps1%(Recovered) Untitled18 ps1*(Recavered) —

| get-azpolicies,ps1 | Untitled19.ps1-(Recovered) Untitled20.ps1*(Recoverad) Untitled21 ps1*{Recoverad) Untitled22 ps1~ X | Untitled23.ps1*
1 $newBinaryData = [System.Text.Encoding]::Unicode.GetBytes(New Binary Data") Add-AzapplicationGatewzyRoutingRule
2 Set-ItemProperty -Path 'HKLM:\Software'\MyCompany' -Name 'BinaryValue' -Value $newBinaryData -Type Binary Add-AzApplicationGatewaySsiCertificate
3 Write-tost "Binary value modified successfully” S _
M Add-AzApplicationGatewaySslProfile

B Registry Edito
File Edit View Fovorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\MyCompany

» 7 Minnetenka Audio § Name Type Data

> Moz\::a 25) (Default) REG_SZ (value not set)
> Bl mazifa.org | BinaryValue REG_BINARY 4e 0D 65 00 77 00 20 00 42 0D 69 00 6e 00 61 00 72 00...
5> 7 MozillaPlugins
MyApp
MyCompany
Notepad++
0BS Studio
» T ODBC
ste > T OEM
HKLM : ’ 4
/alue modi o - Gpensil
OpenVPh

Partner

 Ps c:\wINDOWS\system32>
emProper ath *

Binary Value mod
Policies
PSAppDeployToolkit
Realtek
RegisteredApplicatic
RTLSetup

Setup

SOFTWARE
SynclntegrationClier
Tableau
TAP-Windows
TeamViewer
TechSmith
Videol AN

PS C:\WINDOWS\System

VMware, Inc.
voidtools
WOWE432Node

Completed | tn7 cal2s

Working with Multi-String Values

The registry's multi-string values allow us to store multiple strings within a single value. This
is useful for configurations that require a large number of entries or lists of items. Let's look
at how to use PowerShell to read and modify multi-string values.

We can use the Get-ltemProperty cmdlet to read a multi-string value from the registry by
specifying the path to the registry key and the name of the multi-string value. This returns an

array of strings that represent the values in the multi-string.

Reading Multi-String Value:

SmultiStringValue = (Get-ltemProperty -Path 'HKLM:\Software\MyCompany' -Name
'MultiStringValue').MultiStringValue
Write-Host "Multi-String Value:"
foreach (Svalue in SmultiStringValue) {
Write-Host "- Svalue"

To change a multi-string value, use the Set-ltemProperty cmdlet with the registry key path,
the name of the multi-string value, and an array of strings representing the new values.

www.alexandrumarin.com 141

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-itemproperty?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-itemproperty?view=powershell-7.3
http://www.alexandrumarin.com

Modifying Multi-String Value:

SnewValues = "Value 1", "Value 2", "Value 3"

Set-ltemProperty -Path 'HKLM:\Software\MyCompany' -Name 'MultiStringValue' -Value
SnewValues -Type MultiString

Write-Host "Multi-String Value modified successfully”

In this code, we create an array named SnewValues that contains three string values: "Value
1", "Value 2", and "Value 3."

The Set-ltemProperty cmdlet modifies a registry entry under the path
'HKLM:\Software\MyCompany.' It specifically updates the value of the 'MultiStringValue'
entry with the contents of the array SnewValues, and the data type of the entry is set to
‘MultiString.

After successfully modifying the registry entry, a message is displayed using Write-Host,
indicating that the "Multi-String Value" was successfully modified. This message informs the
user of the action that was taken.

Using transactions for registry operations

A transaction is a logical unit of work that groups together several registry operations. It
ensures that either all or none of the operations within the transaction are completed
successfully. This ensures that the registry maintains its consistency even if an error occurs
during the transaction.

To create a transaction in PowerShell, we can use the Start-Transaction cmdlet. This
initializes a new transaction session, and any registry operations performed within this
session will be included in the transaction.

Creating a Transaction:

Set-Location HKLM:\Software\MyCompany
Start-Transaction

It is important to set the location of the registry where the operations will be done before
the transaction is started, that way PowerShell will identify the changes performed on that
particular key.

www.alexandrumarin.com 142

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-itemproperty?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/start-transaction?view=powershell-5.1
http://www.alexandrumarin.com

Once a transaction has been initiated, we can make registry changes, such as adding or
updating keys and values, within the transaction session. These operations will be recorded
and queued until the transaction is explicitly committed or rolled back.

Performing Registry Operations in a Transaction:

New-Item "Test" -UseTransaction
New-ItemProperty "Test" -Name "MyKey" -Value 123 -UseTransaction

Once all of the desired registry changes have been made, we can either commit or roll back
the transaction. Committing a transaction updates the registry with all changes made during
the transaction session. When a transaction is rolled back, all changes are discarded and the
registry is returned to its previous state.

Committing or Rolling Back a Transaction:

Committing the transaction
Complete-Transaction

Rolling back the transaction
Undo-Transaction

Complete-Transaction is a cmdlet that is part of the PowerShell integrated scripting
environment (ISE). It is used in combination with the Start-Transaction and Use-Transaction
cmdlets to manage and commit transactions in PowerShell scripts. A transaction allows you
to group a series of commands together into a single unit of work that can be committed as
a whole or rolled back if an error occurs. The primary purpose of Complete-Transaction is to
commit the changes made during a transaction. If all the commands within the transaction
executed successfully and you are satisfied with the results, you can call
Complete-Transaction to finalize and apply those changes permanently to the system.

When calling Complete-Transaction, PowerShell checks if all the commands in the
transaction executed without errors. If they did, the changes are committed and become
permanent. If any command within the transaction failed, PowerShell will automatically roll
back the changes made by the entire transaction, leaving the system unchanged.

www.alexandrumarin.com 143

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/complete-transaction?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/start-transaction?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/use-transaction?view=powershell-5.1
http://www.alexandrumarin.com

& hdmir
File Edit View Tools Debug Add-ons Help
H & o » »

| untitied1.ps17(Recovered)

E = a

= | @ [B oo

Untitied3.ps1*(Recovered)

tied2.ps1*(Recoverad) copyfolderpst u Commands X x

tiecd,ps1*(Recovered)

| Untitleds.ps1*(Recovered) Untitled6.ps1*(Recovered) Untitled7.ps1"(Recovered)

Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Moduies: | Al "
| Untitied13.ps1*(Recovered) Untitled16.ps1*(Recovered) AppFinder.ps1 Untitled17.ps1*(Recovered) Untitied18.ps1*(Recovered) e
| get-azpoliciespsi | Untitled19.ps1*(Recavered) Untitled20.ps1*(Recovered) Untitled21.ps1*(Recovered) Untitled22,ps1* X | Untitled23.ps1*
Set-Location HKLM:'\Software\MyCompany Add-AzApplicationGatewayRoutingRule
Start-Transaction Add-AzApplicationGatewaySsiCertificate

New-Item "Test” -UseTransaction
New-ItemProperty "Test” -Name “Mykey”
Complete-Transaction

Adc-AzApplicationGatewsySsiProfile
Add-AzAnnlicatinnGatewavTrustedClientCertificate.

B Registry Editor - [m} X
File Edit View Favorites

-value 123 -UseTransaction

[EFSrT

Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\MyCompany\ Test
> 77 Minnetonka Audic Softw:
5 7 Mozilla
3 7 mozilla.org
5 7 MozillzPlugins

MyApp
~ 7 MyCompany

LS Test

Notepad-++

0OBS Studic
» 77 ODBC
5 ©2 OEM
3 7 OpenSsH
OpenVPN
Partner

Name
b (Default)
24 Mykey

Type Data
REG_SZ

REG_DWORD

(value not set)

00000007k (123)

ompany> Set-Location HKLM

ransaction
New-ItemProperty “Test” -Name
Complete-Transaction

MyKey" -Value 123 -Usq

Hive: HKEY_LOCAL_MACHINE\Software\MyCompany Policies

PSAppDeployToolkit
Realtek
RegisteredApplications
RTLSetup

Setup

SOFTWARE
SynclntegrationClients
Tablezu

TAP-Windows
Teamiewer
TechSmith

VideoL AN

VMware, Inc.

Property

Shell.Core)
hell. Core

Microsoft. Pow
Microsoft. Pow
Test
HKLM
Microsoft.PowerShell.Core

PSParentPath
P5ChiTldName

voidtools

Ln25 Col30 |

Completed 100%
If a transaction is rolled back, the changes done during the transaction are reverted.
B ad dows PowerShell ISE o |
File Edit View Tools Debug Add-ons Help |
I~ = a » b G ® | B |5 00| & B
| Untitled1.ps1*(Recovered) Untitled2,ps1*{Recovered) Untitled3.ps1*(Recovered) copyfolder.psi Untitledd.ps1"(Recovered) Commands X X
| UntitledS.ps1*(Recovered) Untitled6.ps1*(Recovered) Untitled?.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps] Moduies: | All .
| Untitled13.ps1*(Recovered) Untitled16.ps1*(Recovered) AppFinderps] Untitled17.ps1*(Recovered) Untitled18.ps1*{Recovered) Mames
| get-azpeliciesps1 | Untitied19.ps1*(Recovered) Untitled20.ps1*(Recovered) Untitled21.ps1*(Recoverad) Untitled22.ps1* X | Untitled23.ps1*
1 Set-Location HKLM:\Software\MyCompany Add-AzApplicationGatewayRoutingRule
2 Start-Transaction Add-AzApplicationGatewayssiCertificate
3 New-Item "Test” -UseTransaction y . N
2 New-TtemProperty "Test” -Name “MyKey” -Value 123 -UseTransaction Add-AzApplicationGatewaySsiProfile
5 Undo-Transaction Add.AzAnnlicatinnGatewaTrustedClientCartificats
Registry Editor - o X
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\MyCempany
»> © Minnetonka Audio Softwi || Name Type Dats
» & Mozilla o8] (Default) REG_SZ (value not set)
> °7 mozilla.org
> © MezillaPlugins
MyApp
L7 MyCompany
.77 Notepad=+
L7 0BS Studio
> =7 ODBC
» 52 OEM
> 77 OpenSSH
PS HKLM:\Softwar e\MyCompany= -5 OpenVPN
Start-Transaction > 7 Partner
New Ttenproperty - Mykey” —Value 123 -U > 23 polices
jew-ItemProperty yKey" -Value 123 -Us{ -
undo-Transaction > 7 PSAppDeployToolkit
> 7 Realtek
Hive: HKEY_LOCAL_MACHINE\Software\MyCompany i RegisteredApplications
> 7 RilSetup
> 2 Setup
Name Property S = SOFTWARE
Test > 7 SyncIntegrationClients
o > 7 Tableau
yKey :
pPSPath Microsoft. PowerShell. Corel #0 TAP-Windows
PSParentPath : Microsoft.PowersShell.Core\ 5 7 TeamViewer
PSChildName : Test
Peorve b > 7 TechSmith
PSProvider Microsoft. PowerShell.Core) » [VideoLAN
> 7 VMware, Inc.
> 7 voidtools
> T WOWB432Node
PS_HKLM:\Softwar e\MyCompany> Ry
Completed Ln49 Col30 | 1 100%

www.alexandrumarin.com

144

http://www.alexandrumarin.com

You cannot roll back a transaction that has been committed.

You cannot roll back any transaction other than the active transaction. To roll back a
different, independent transaction, you must first commit or roll back the active
transaction.

Rolling back the transaction ends the transaction. To use a transaction again, you must
start a new transaction.

www.alexandrumarin.com 145

http://www.alexandrumarin.com

Working with WMI in PowerShell

Introduction to WMI
What is WMI?

WMI (Windows Management Instrumentation) is a powerful management technology that
enables administrators and developers to retrieve information and manage Windows-based
systems. It enables standardized access to and interaction with a wide range of system
resources, such as hardware components, operating system settings, network
configurations, and more.

Why Use WMI in PowerShell?

WMI is especially useful in PowerShell because it allows us to automate administrative
tasks, collect system data, and monitor system health. We can perform complex system
management tasks with ease by leveraging WMI in PowerShell scripts, saving time and
effort. WMI enables us to access a wide range of system data, remotely execute commands
on multiple machines, and create powerful monitoring and reporting solutions.

WMI Namespace and Classes Overview

WMI classifies and organizes system resources into namespaces and classes. Namespaces
are logical containers that group together related classes, whereas classes represent the
actual system resources with which we can interact. Understanding the WMI namespace
and classes is critical for using WMI in PowerShell effectively.

Retrieving a List of WMI Namespaces:

Get-WMIObject -namespace "root" -class "__Namespace" | Select Name

www.alexandrumarin.com 146

http://www.alexandrumarin.com

B administrator: Windows Powt

PS C:\Users\User> Get-WMIObject | select Name

subscription
DEFAULT

CIMV2

msdtc

Ccli

Intel_ME
SECURITY
SecurityCenter2
RSOP

PEH
StandardCimv2
WMI

directory
Policy

Interop
Hardware
ServiceModel
SecurityCenter
Microsoft

Appv

:\Users\User> |

Exploring WMI Classes within a Namespace:

Get-CimClass -Namespace root\cimv2 | ForEach-Object CimClassName

2 Administrator: Windows Powt X + -

ystemSecurity
PS C:\Users\User> Get-CimClass root\cimv2 | ForEach-Object CimClassName
CIM_Indication
CIM_ClassIndication
CIM_ClassDeletion
CIM_ClassCreation
CIM_ClassModification
CIM_InstIndication
CIM_InstCreation
CIM_InstModification
CIM_InstDeletion
__NotifyStatus
__ExtendedStatus
Win32_PrivilegesStatus
Win32_JoboObjectStatus
CIM_Error
MSFT_WmiError
MSFT_ExtendedStatus
__SecurityRelatedClass
__Trustee
Win32_Trustee
__NTLMUser9x
__ACE
Win32_ACE
__SecurityDescriptor
Win32_SecurityDescriptor
__PARAMETERS
__SystemClass
__ProviderRegistration
__EventProviderRegistration

Retrieving Information from a Specific WMI Class:

Get-WmiObject -Class Win32_Processor

www.alexandrumarin.com

147

http://www.alexandrumarin.com

"-' 2 Administrator: Windows Pow: X + | =

PS C:\Users\User> Get-WmiObject Win32_Processor

Caption : Inteléd Family 6 Model 151 Stepping 2
DeviceID : CPUB

Manufacturer : GenuineIntel

MaxClockSpeed 1 3680

Name : 12th Gen Intel(R) Core(TM) i7-12706KF
SocketDesignation : U3E1l

PS C:\Users\User> |

We gain insight into the wealth of system resources available through WMI by querying the
available namespaces and exploring the classes within them. This knowledge enables us to
leverage the power of WMI in PowerShell scripts for system management and automation.

www.alexandrumarin.com 148

http://www.alexandrumarin.com

Getting Started with WMI in PowerShell
Enabling and Verifying WMI Access

Before you begin working with WMI in PowerShell, make sure that WMI is enabled and that
you have the necessary access rights. This section will walk you through the process of
enabling and verifying WMI access on your system.

Checking if WMl is Enabled:

Get-Service -Name "winmgmt" | Select-Object Status

" B administrator: Windows Powt X + |

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
PS C:\Users\User> Get-Service | select-Object Status
Status

Running

PS C:\Users\User> |

Verifying Administrative Access to WMI

Get-WmiObject -Class Win32_0OperatingSystem -ErrorAction SilentlyContinue

Exploring WMI Classes and Properties

To work effectively with WMI, you must first understand the classes and their properties.
This section will demonstrate how to investigate WMI classes and access their properties.

To get a list of WMI Classes:

www.alexandrumarin.com 149

http://www.alexandrumarin.com

Get-WmiObject -List

2 administrator: Windows Powt

PS C:\Users\User> Get-WmiGObject

NameSpace: ROOT\cimv2

Name Methods Properties

CIM_Indication
CIM_ClassIndication
CIM_ClassDeletion
CIM_ClassCreation
CIM_ClassModification
CIM_InstIndication
CIM_InstCreation
CIM_InstModification
CIM_InstDeletion

Win32_PrivilegesStatus

Win32_JobObjectStatus

CIM_Error

MSFT_WmiError

MSFT_ExtendedStatus

__SecurityRelatedClass
Trustee

{CorrelatedIndications, IndicationFilterName, IndicationIde...
{ClassDefinition, CorrelatedIndications, IndicationFilterNa.
{ClassDefinition, CorrelatedIndications, IndicationFilterNa.
{ClassDefinition, CorrelatedIndications, IndicationFilterNa.
{ClassDefinition, CorrelatedIndications, IndicationFilterNa
{CorrelatedIndications, IndicationFilterName, IndicationId
{CorrelatedIndications, IndicationFilterName, IndicationId
{CorrelatedIndications, IndicationFilterName, IndicationId
{CorrelatedIndications, IndicationFilterName, IndicationId
{statusCode}

{Description, Operation, ParameterInfo, ProviderName...}
{Description, Operation, ParameterInfo, PrivilegesNotHeld...
{AdditionalDescription, Description, Operation, ParameterIn...
{CIMStatusCode, CIMStatusCodeDescription, ErrorSource, Erro...
{CIMStatusCode, CIMStatusCodeDescription, error_Category, e.

{CIMStatusCode, CIMStatusCodeDescription, error_Category, e...
51
Ly

{Domain, Name, SID, SidLength...

Win32_Trustee
__NTLMUsergx

}
{Domain, Name, SID, SidLength...}
{Authority, Flags, Mask, Name...}

{AccessMask, AceFlags, AceType, GuidInheritedObjectType...
{AccessMask, AceFlags, AceType, GuidInheritedObjectType...
{ControlFlags, DACL, Group, Owner...}

B e T e e i i e e R R s R ey
S - - - N S e - - e - B B B o

__SecurityDescriptor

Accessing Properties of a WMI Class:

ScomputerSystem = Get-WmiObject -Class Win32_ComputerSystem
ScomputerSystem.Name

ScomputerSystem.Manufacturer

ScomputerSystem.Model

www.alexandrumarin.com 150

http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE = m] >

File Edit View Tools Debug Add-ons Help

0 & B4 B » b B = | 8| Boo & om.-

| Untitled 1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1%{Recovered) Untitled5.ps1™{Recovered) |

| Untitled6.ps1*(Recovered) | Untitled7.ps1*{Recoverad) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recoverad) | =
| Untitled16.ps1*(Recavered) AppFinder.psi Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*({Recovered) | .
| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* X |

1 ScomputerSystem = Get-WmiObject -Class Win32_ComputerSystem
2 ScomputerSystem.Name

3 ScomputerSystem.Manufacturer

4 ScomputersSystem.Model
5

PS5 C:\WINDOWS\sy
$computerSystem.
$computerSystem.
ScomputerSystem. Model

VIPER
Gigabyte Technology Co.,
Z690 UD AX

PS C:\WINDOWS\system32>

Completed - - - - - _ | Ln 10 Cel 25 1= 100%
This code retrieves information about the computer system using the WMI class
Win32_ComputerSystem.

Get-WmiObject is a cmdlet in PowerShell that allows you to retrieve WMI objects based on
specified criteria. In this case, we are specifying the -Class parameter with the value
Win32_ComputerSystem to target the computer system information.

The returned object is assigned to the variable ScomputerSystem, which allows us to access
its properties.

ScomputerSystem.Name retrieves the name of the computer system.
ScomputerSystem.Manufacturer retrieves the manufacturer of the computer system.
ScomputerSystem.Model retrieves the model of the computer system.

By accessing these properties, you can obtain specific information about the computer
system, such as its name, manufacturer, and model. These properties are part of the
Win32_ComputerSystem class, which provides a wide range of system-related information
that can be retrieved using WMI.

www.alexandrumarin.com 151

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject?view=powershell-5.1
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-computersystem
http://www.alexandrumarin.com

Querying WMI Data with PowerShell

WMI data querying enables you to retrieve specific information from WMI classes based on
predefined criteria. This section will show you how to use PowerShell to query WMI data.

Simple WMI Query:

Get-WmiObject -Query "SELECT * FROM Win32_Processor"

Filtering WMI Query Results:

Get-WmiObject -Query "SELECT * FROM Win32_ComputerSystem WHERE Manufacturer =
'Gigabyte Technology Co., Ltd."

[J) B Administrator: Windows Powe X + -

PS C:\Users\User> Get-WmiObject

Domain : WORKGROUP

Manufacturer : Gigabyte Technology Co., Ltd.
Model 1 Z698 UD AX

Name : VIPER

PrimaryOwnerName : User

TotalPhysicalMemory : 34193502208

PS C:\Users\User> |

The above code uses the Get-WmiObject cmdlet to query the Win32_ComputerSystem class
and retrieve information about computer systems where the manufacturer is 'Gigabyte
Technology Co., Ltd!

The -Query parameter is used to specify the query string in WQL (WMI Query Language)
format. In this case, the query is "SELECT * FROM Win32_ComputerSystem WHERE
Manufacturer = 'Gigabyte Technology Co., Ltd.".

This query selects all properties (*) from the Win32_ComputerSystem class and filters the
results based on the condition Manufacturer = 'Gigabyte Technology Co., Ltd.". It instructs

www.alexandrumarin.com 152

http://www.alexandrumarin.com

WMI to only return computer systems where the manufacturer matches 'Gigabyte
Technology Co., Ltd!

By running this code, you'll get an object or a collection of objects representing computer
systems from the specified manufacturer. The returned object(s)' properties will contain
detailed information about those computer systems, such as their names, models, system
types, and so on.

Combining WMI Queries:

Get-WmiObject -Query "SELECT * FROM Win32_ComputerSystem WHERE Manufacturer =
'Gigabyte Technology Co., Ltd." AND Model ='Z690 UD AX"

"-' 2 Administrator: Windows Pow: X + | =

PS C:\Users\User> Get-WmiObject

Domain : WORKGROUP

Manufacturer : Gigabyte Technology Co.,
Model 1 2698 UD AX

Name : VIPER

PrimaryOwnerName : User
TotalPhysicalMemory : 34193502208

PS C:\Users\User> Get-WmiObject

Domain : WORKGROUP

Manufacturer : Gigabyte Technology Co.,
Model : Z698 UD AX

Name : VIPER

PrimaryOwnerName : User
TotalPhysicalMemory : 34193502208

PS C:\Users\User> |

If we break down the code, Query "SELECT * FROM Win32_ComputerSystem WHERE
Manufacturer = '‘Gigabyte Technology Co., Ltd. AND Model ='Z690 UD AX": This parameter
specifies the query to be executed against the WMI class.

"SELECT * FROM Win32_ComputerSystem": This part of the query selects all properties from
the Win32_ComputerSystem class.

WHERE Manufacturer = 'Gigabyte Technology Co., Ltd." AND Model ='2690 UD AX'": This part
of the query filters the results based on the Manufacturer and Model properties. It will only
return instances where the Manufacturer is "Gigabyte Technology Co., Ltd." and the Model is
"Z690 UD AX".

So, the code will retrieve instances of the Win32_ComputerSystem class where the
Manufacturer is "Gigabyte Technology Co., Ltd." and the Model is "Z690 UD AX".

www.alexandrumarin.com 153

http://www.alexandrumarin.com

Retrieving System Information
Getting Computer Information with Win32_ComputerSystem Class

The Win32 ComputerSystem class is a powerful WMI class that provides a wealth of
computer system information. It enables us to obtain information about the hardware,
operating system, and overall system configuration.

Here are some key properties available in the Win32_ComputerSystem class:

Name: Represents the name of the computer.

Manufacturer: Specifies the manufacturer or builder of the computer.

Model: Indicates the model or product name of the computer.
TotalPhysicalMemory: Represents the total physical memory (RAM) installed in the
computer.

Domain: Specifies the domain to which the computer belongs.

SystemType: Provides information about the system type, such as whether itis a
desktop, laptop, or server.

UserName: Represents the name of the currently logged-in user.
PrimaryOwnerName: Indicates the name of the primary owner or user of the
computer.

e LastBootUpTime: Specifies the date and time when the computer was last booted.

These properties can be accessed using PowerShell cmdlets like Get-WmiObject or
Get-CimlInstance.

ScomputerSystem = Get-WmiObject -Class Win32_ComputerSystem

Write-Host "Computer Name: $(ScomputerSystem.Name)"

Write-Host "Manufacturer: $(ScomputerSystem.Manufacturer)”

Write-Host "Model: $(ScomputerSystem.Model)"

Write-Host "Total Physical Memory: $(ScomputerSystem.TotalPhysicalMemory) bytes"

www.alexandrumarin.com 154

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/cimcmdlets/get-ciminstance?view=powershell-7.3
http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE = m] >
File Edit View Tools Debug Add-ons Help

0 & B4 B » b B = | 8| Boo & om.-

| Untitled 1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1%{Recovered) Untitled5.ps1™{Recovered) |

| Untitled6.ps1*(Recovered) | Untitled7.ps1*{Recoverad) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recoverad) | =
| Untitled16.ps1*(Recavered) AppFinder.psi Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*({Recovered) | .
| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* X |

1 ScomputerSystem = Get-WmiObject -Class Win32_ComputerSystem

Write-Host "Computer Name: S($computerSystem.Name)"

Write-Host "Manufacturer: S({icomputersSystem.Manufacturer)”

Write-Host "Model: $(3computersSystem.Model)”

Write-Host "Total Physical Memory: S(ScomputerSystem.TotalPhysicalMemory) bytes”

LN R RN

PS C:\WINDOWS\system32> $computerSystem = Get-WmiObject -Class Win32_ComputerSystem

Write-Host “Computer Name: $($computerSystem.Name)™

Write-Host anufacturer: $(ScomputerSystem.Manufacturer)™
Write-Host el: $($computerSystem.Model)™
Write-Host al Physical Memory: $($computerSystem.TotalPhysicalMemory) bytes™

Computer Name: VIPER

Manufacturer: Gigabyte Technology Co., Ltd.
Model: Z690 UD AX

Total Physical Memory: 34193502208 bytes

PS C:\WINDOWS\system32>

Ln13 Col 25 100%

In the above example, we use the Get-WmiObject cmdlet to retrieve the
Win32_ComputerSystem class instance. We then access different properties like Name,
Manufacturer, Model, and TotalPhysicalMemory to display relevant information about the
computer.

Gathering Operating System Details with Win32_OperatingSystem
Class

The Win32_OperatingSystem class is another important WMI class that provides detailed
information about the operating system installed on a computer. It allows us to gather
various details related to the operating system, such as its version, build number,
architecture, boot device, system directory, and more.

Here are some key properties available in the Win32_OperatingSystem class:

Caption: Represents a short description or caption of the operating system.

Version: Indicates the version number of the operating system.

BuildNumber: Specifies the build number of the operating system.

OSArchitecture: Provides information about the architecture of the operating system,
such as x86 or x64.

e SystemDevice: Represents the boot device for the operating system.

www.alexandrumarin.com 155

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-operatingsystem
http://www.alexandrumarin.com

e SystembDirectory: Specifies the path to the system directory, where essential
operating system files are stored.

e CountryCode: Indicates the country code of the operating system's locale.
LastBootUpTime: Specifies the date and time when the operating system was last
booted.

RegisteredUser: Represents the registered owner of the operating system.
SerialNumber: Provides the serial number or product key of the operating system.

These properties can be accessed using PowerShell cmdlets like Get-WmiObject or
Get-Cimlinstance.

SoperatingSystem = Get-WmiObject -Class Win32_OperatingSystem

Write-Host "Operating System: $(SoperatingSystem.Caption)"

Write-Host "Version: $(SoperatingSystem.Version)"

Write-Host "Build Number: $(SoperatingSystem.BuildNumber)"

Write-Host "Service Pack:
S(SoperatingSystem.ServicePackMajorVersion).$(SoperatingSystem.ServicePackMinorVer
sion)"

Q Administrator: Windows PowerShell ISE = m] x
File Edit View Tools Debug Add-ons Help

0 & H & B > | Runscript (75 | D B|= |8 (oo & om.

| Untitled 1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.psl Untitledd.ps1*{Recovered) Untitled3.ps1*{Recovered) |
| Untitled6.ps1*(Recoverad) | Untitled7.ps1*(Recovered) Untitled8.ps1™(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) |
~

| Untitled16.ps1*(Recovered) AppFinder.psl Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*(Recovered) |
| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* x |

1 SoperatingSystem = Get-WmiObject -Class Win3Z_OperatingSystem

2

3 Write-Host "Operating System: §(%operatingSystem.Caption)"”

4 Write-Host "Version: $(3operatingSystem.Version)"”

5 Write-Host "Build Number: S$({%operatingSystem.BuildNumber)"

6 Write-Host "Service Pack: $(foperatingSystem.ServicePackMajorVersion).5S(foperatingSystem. ServicePackMinorVersion)"”

PS5 C:\WINDOWS\system32> $operatingSystem = Get-WmiObject -Class Win32_OperatingSystem

Write-Host "Operating System: §(S$operatingSystem.Caption)”

Write-Host "Version: %($operatingSyst Version) ™

Write-Host "Build Number: $(Soperatin em. Bui 1dNumber) ™

Write-Host "Service Pack: $(Soperatings em. ServicePackMajorVersion). $($operatingSystem. ServicePackMinorVersion) ™

Operating System: Microsoft Windows 11 Pro
Version: 10.0.22621

Build Number: 22621

service Pack: 0.0

PS C:\WINDOWS\system32x=

Ln 13 Col 25 100%

www.alexandrumarin.com 156

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/cimcmdlets/get-ciminstance?view=powershell-7.3
http://www.alexandrumarin.com

In the above example, we retrieve the Win32_OperatingSystem class instance and access
properties like Caption, Version, BuildNumber, ServicePackMajorVersion, and
ServicePackMinorVersion to display information about the operating system.

Monitoring Hardware and Device Information

Using PowerShell, we can also monitor and gather information about hardware and devices
on the system. WMI provides various classes to retrieve details about hardware components
such as processors, memory, disk drives, and more.

There are several WMI classes that provide hardware and device information. Here are some
commonly used WMI classes for retrieving hardware and device details:

e Win32_Processor: Provides information about the computer's processor(s), such as
the name, architecture, clock speed, and more.

e Win32_PhysicalMemory: Represents physical memory modules installed on the
computer. It includes details like capacity, speed, manufacturer, and other attributes.

e Win32 |ogicalDisk: Retrieves information about the computer's logical disks, such as
local hard drives, network drives, and removable storage devices. It includes
properties like the drive letter, file system, total size, and free space.

e Win32_NetworkAdapter: Represents network adapters installed on the computer. It
provides details like the adapter name, description, MAC address, and more.

e Win32 Printer: Retrieves information about printers installed on the computer,
including properties like printer name, status, location, and default printer setting.

e Win32_CDROMDrive: Represents CD-ROM drives installed on the computer. It
includes properties like drive letter, manufacturer, media type, and more.

e Win32 Battery: Provides information about the computer's battery (if applicable). It
includes details like battery status, remaining capacity, and power state.

e Win32 BaseBoard: Retrieves details about the computer's baseboard (system board
or motherboard). It includes properties like manufacturer, model, serial number, and
more.

e Win32_DisplayConfiguration: Represents the computer's display settings and
configuration, including properties like screen resolution, color depth, and refresh
rate.

e Win32_PnPEntity: Retrieves information about Plug and Play devices installed on the
computer. It includes details like device name, manufacturer, driver details, and more.

These are just a few of the WMI classes that can be used to retrieve hardware and device
information. Each class provides unique properties and methods for gaining access to
various aspects of hardware and devices on a computer.

Sprocessors = Get-WmiObject -Class Win32_Processor
Smemory = Get-WmiObject -Class Win32_PhysicalMemory

www.alexandrumarin.com 157

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-processor
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-physicalmemory
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-logicaldisk
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-networkadapter
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-printer
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-cdromdrive
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-battery
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-baseboard
https://learn.microsoft.com/en-us/previous-versions/aa394137(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-pnpentity
http://www.alexandrumarin.com

SdiskDrives = Get-WmiObject -Class Win32_DiskDrive

Write-Host "Number of Processors: $(Sprocessors.Count)"

Write-Host "Total Physical Memory: $(Smemory | Measure-Object -Property Capacity
-Sum).Sum"

Write-Host "Disk Drives:"

foreach (SdiskDrive in SdiskDrives) {
Write-Host " DevicelD: $(SdiskDrive.DevicelD)"
Write-Host " Model: $(SdiskDrive.Model)"
Write-Host " Size: $(SdiskDrive.Size) bytes"

Write-Host "-----------mmmmm- "
}
B administrator: Windows PowerShell ISE = m} *
File Edit View Tools Debug Add-ons Help
B & d 4 B > |Run Script (F5) B L & ’; 0O O B O =
| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1*{Recovered) Untitled5.ps1*{Recovered) |
| Untitledf.ps1*(Recovered) | Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) | -
| Untitled16.ps1*(Recovered) AppFinder.psi Untitled21.ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*(Recovered) | .
| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* X |

1 Sprocessors = Get-WmiObject -Class Win32_Processor

2 Smemory = Get-WmiObject -Class Win32_PhysicalMemory

3 $diskDrives = Get-WmiObject -Class Win3Z_DiskDrive

4

5 Write-Host "Mumber of Processors: $(Sprocessors.Count)”
& Write-Host "Total Physical Memory: S({Smemory Measure-0Object -Property Capacity -Sum).Sum”
7 Write-Host "Disk Drives:"

8

9 [foreach (SdiskDrive in SdiskDrives) {

10 Write-Host " DeviceID: $($diskDrive.DeviceID)"

11 Write-Host " Model: $(SdiskDrive.Model)”

12 Write-Host " Size: $(%diskDrive.Size) bytes”

132 Weita-Haet Moo "

foreach ($diskDrive in $diskDrives) {
Write-Host ” e skDrive. Devi
Write-Host " : $(8ds i del)”
Write-Host ” i i d
Write-Host ”

Total Physical Memory: Microsoft.PowerShell.Commands.GeneridMeasureInfo. Sum
Disk Drive

DeviceID: \\.\PHYSICALDRIVEL
M : P600

. \PHYSICALDRIVED
000DMO08-2UB102
396321280 bytes

PS C:\WINDOWS\system32>

Ln 28 Col 25 100%

In the above example, we retrieve information about processors, physical memory, and disk
drives using the respective Win32 classes. We then display details like the number of
processors, total physical memory, and information about each disk drive.

www.alexandrumarin.com 158

http://www.alexandrumarin.com

Managing Processes and Services

Working with Win32_Process Class

The Win32_Process class in WMI provides a powerful way to monitor and manage
processes running on a Windows system. With PowerShell, you can leverage this class to
perform various tasks related to processes.

A process running on the system is represented by the Win32 Process class. It reveals
properties like Processld, ExecutablePath, CommandLine, and others. You can gather
information about processes and perform operations such as starting, stopping, and
terminating processes by querying instances of this class.

Retrieving Process Information:

Sprocesses = Get-WmiObject -Class Win32_Process

foreach (Sprocess in Sprocesses) {
Write-Host "Process ID: $(Sprocess.Processld)"
Write-Host "Name: $(Sprocess.Name)"
Write-Host "Path: $(Sprocess.ExecutablePath)"
Write-Host "Command Line: $(Sprocess.CommandLine)"
Write-Host " !

www.alexandrumarin.com

159

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-process
http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE = m] >
File Edit View Tools Debug Add-ons Help

0 & B4 B » D B = | 8| Boo & om.-

| Untitled 1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1%{Recovered) Untitled5.ps1™{Recovered) |

| Untitled6.ps1*(Recovered) | Untitled7.ps1*{Recoverad) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recoverad) |

| Untitled16.ps1*(Recavered) AppFinder.psi Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*({Recovered) |

| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* X |
Sprocesses = Get-WmiObject -Class Win32_Process

—foreach (Sprocess in $processes)
Write-Host "Process ID: $($process.ProcessId)”
Write-Host ”\lame: S(3process.Name)"
Write-Host "Path: §(%process.ExecutablePath)"”
Write-Host Comnand Line: $(%process.CommandLine)"
Write-Host "------mmmm e "

R LR TR

Name: SearchProtocolHost. exe

Path:

Command 3 =\ . earchProtocolHost. exe” Globa’ r i Gthr » 5-1-5-21- 33694-1839577192-135209045-100113_
P thrPipe_5-1- 1-1216333694-18395771 5 4 i ndows Search”

il1la/4.0 (compatible; MSIE 6.0; Windows NT; M5 Search 4.0 Robot) rogramData\MicrosofthSearchData\Temphusgthrsvc Downl evelDaemon

nye

Process T
Name: Teams.
Path: C:\User urrenthTeams. exe
Command Lin 5 r i = rrenthTeams. exe™ --type=r enderer --enable-wer --user-data-di M\UsersiUser\A
ppDat a\RDE.m'I ng\ " ms-teams-1 63 —-app-user —mnjde'\ -id=com.squirrel.Teams. Teams

. esourceshapp.asar” --autoplay-policy=no-user-gesture-required --disable-background-timer-throttling
g er-threads=4 --enable-main-frame-before-activation --rende -clier aunch-time-ticks
49844858 --mojo-platform-channel-handle --field-trial-handle=1768,1,10108115864077931889, 61088465 30688821434 ,131072 --enable-features=
ContextBridgeMutability, ForceSWCompositionwhenDCompls NotSupport ed, SharedArrayBuffer ,WinUseBrowserSspellChecker ,WinUseHybridSpellChecker --di
zable- 'Featur es=CalculateNativewWinOcclusion,ExtraCookieValidityChecks,ForcedColors, SpareRendererFor5itePerProcess ,WinRetrieveSuggestionsOnly

Ln 2253 Col 25 100%

The Win32_Process class contains several methods for operating on processes. Commonly
employed methods include:

Terminate(): Terminates a process by its process ID.
GetOwner(): Retrieves the owner of the process.
Create(): Creates a new process.

SetPriority(): Sets the priority of a process.

Terminating a Process:

Sprocessld = 1234
Sprocess = Get-WmiObject -Class Win32_Process -Filter "Processld='Sprocessld"
Sprocess.Terminate()

The Win32 Process class provides performance-related properties in addition to basic
process information. These properties can be used to track a process's CPU and memory
usage.

Monitoring Process CPU Usage:

Sprocesses = Get-WmiObject -Class Win32_Process

www.alexandrumarin.com 160

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-process
http://www.alexandrumarin.com

foreach (Sprocess in Sprocesses) {
Write-Host "Process ID: $(Sprocess.Processld)"
Write-Host "CPU Usage: $(Sprocess.PercentProcessorTime) %"
Write-Host "Memory Usage: S$(Sprocess.WorkingSetSize) bytes"
Write-Host " "

g Administrater: Windows PowerShell ISE

= [m] X

File Edit View Tools Debug Add-ons Help

AR = I, B » D B« | 8| Boo & m.

| Untitled1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps15{Recovered) Untitled3.ps17{Recovered) |
| Untitled6.ps1*(Recoverad) | Untitled7.ps1*(Recoverad) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recoverad) |
| Untitled16.ps1*(Recovered) AppFinder.ps1 Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*(Recovered) |
| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* X |

1 Sprocesses = Get-wWmiObject -Class Win3Z_Process

3 Fforeach (Sprocess in $processes) {

4 Write-Host "Process ID: $($process.ProcessId)"”

5 Write-Host "CPU Usage: 3(%process.PercentProcessorTime) %"
[Write-Host "Memory Usage: $(3process.WorkingSetSize) bytes”
8
9

Write-Host "---------------ommmm

CPU Usage:
Memory Usag

Process I
CPU Usage
Memory Usag

Process I
CPU Usage
Memory Usag

Process ID:
CPU Usage
Memory Usag

Ln 1435 Col 25 100%

www.alexandrumarin.com 161

- S |

http://www.alexandrumarin.com

Controlling Services with Win32_Service Class

WMI's Win32_Service class allows you to manage services that are running on a Windows
system. This class can be used in PowerShell to query, start, stop, and modify services.

A Windows service is represented by the Win32 Service class.

It has properties like Name, DisplayName, State, StartMode, and others. You can interact
with this class to perform operations such as starting, stopping, pausing, and modifying
service configurations.

You can use the Get-WmiObject cmdlet with the Win32 Service class to retrieve information
about services on a Windows system. This will return a collection of service objects with
which you can interact.

Retrieving Service Information

Sservices = Get-WmiObject -Class Win32_Service

foreach (Sservice in Sservices) {
Write-Host "Service Name: $(Sservice.Name)"
Write-Host "Display Name: $($service.DisplayName)"
Write-Host "Status: $(Sservice.State)"
Write-Host "Start Mode: $(Sservice.StartMode)"
Write-Host " "

www.alexandrumarin.com 162

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-service
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject?view=powershell-5.1
http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE = m] >
File Edit View Tools Debug Add-ons Help

D@ H &5 8 N |unsme]» = | 8|Eoo ®mo.
| Untitled 1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1%{Recovered) Untitled5.ps1™{Recovered) |
| Untitled6.ps1*(Recovered) | Untitled7.ps1*{Recoverad) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recoverad) |
| Untitled16.ps1*(Recavered) AppFinder.psi Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*({Recovered) |
| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* x |
1 $services = Get-WmiObject -Class Win32_Service
2
3 foreach (Sservice in $services) {
4 Write-Host "Service Name: $(%service.Name)"
5 Write-Host "Display Name: $(%service.DisplayName)”
3 Write-Host "Status: $(Sservice.State)"”
7 Write-Host "Start Mode: $($service.StartMode)”
8 Write-Host "------mmmmmm o "
9 [}
o
Display Name: User Data Access_7435b
: Running
ode: Manual
Service Name: webthreatdefusersvc_7435b
Display Name: b Threat Defense User Serwvice_7435h
Status: Running
Start Mode: Auto
Display Name: Windows Push Notifications User Service_7435b
Status: Running
Start Mode: Auto
Display Name:
Status: Running
Start Mode
PS C:\WINDOWS\system32>
Ln 1592 Col 25 100%

The Win32 Service class provides methods for starting, stopping, pausing, and resumeing

services on a Windows system. These methods can be used to control the state of services
based on your needs.

Starting and Stopping a Service

SserviceName = "MyService"
Sservice = Get-WmiObject -Class Win32_Service -Filter "Name='SserviceName"

Start the service
Sservice.StartService()

Stop the service
Sservice.StopService()

www.alexandrumarin.com 163

http://www.alexandrumarin.com

Q Administrater: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help

0 & B4 B » b B = | 8| Boo & om.-
| Untitled 1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1%{Recovered)
| Untitled6.ps1*(Recovered) | Untitled7.ps1*{Recoverad) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1
| Untitled16.ps1*(Recavered) AppFinder.psi Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1
| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered)
1 $serviceName = "Spooler”

Sservice = Get-WmiObject -Class Win3Z_Service -Filter "Name="S5serviceName'™

Stop the service
Sservice. StopService()

[N T I

Start the service
Szervice. startService()

fservice = Get-WmiObject -Class Win32_Service -Filter "Name="3$serviceName""

Stop the service
$service. StopService()

Start the service

$service. StartSservice()

ElA
: __PARAMETERS

L

: __PARAMETERS

=]
5

RELPATH E]
PROPERTY_COUNT : 1
DERIVATION : {3
SERVER E]
__NAMESPACE

—PATH E]
ReturnValue : 0
PSComputerName

In addition to controlling services, the Win32_Service class allows you to modify service
configuration settings. You can change properties such as the display name, description,

startup type, and more.

Modifying Service Configuration:

Untitled5.ps1™{Recovered)

Untitled13.ps1*(Recoverad)

Untitled28.ps1*

Ln 63 Col 25

|
|
Untitled23.ps1%(Recovered) |

A

x

100%

SserviceName = "MyService"
Change the display name
Sservice.DisplayName = "New Display Name"

Change the startup type to automatic
Sservice.StartMode = "Auto”

Save the changes
Sservice.Put()

Sservice = Get-WmiObject -Class Win32_Service -Filter "Name='SserviceName"

The Win32_Service class provides properties that allow you to monitor the status of
services. You can check the state, start mode, process ID, and other properties to get

real-time information about the running services on a Windows system.

www.alexandrumarin.com

164

http://www.alexandrumarin.com

Monitoring Service Status

Sservices = Get-WmiObject -Class Win32_Service

foreach (Sservice in Sservices) {
Write-Host "Service Name: $(Sservice.Name)"
Write-Host "Status: $(Sservice.State)"
Write-Host "Start Mode: $(Sservice.StartMode)"
Write-Host "Process ID: $(Sservice.Processld)"
Write-Host " "

Q Administrater: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help

0 & B o4& B » b B« | 8| Boo & om-

| Untitled1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps15{Recovered)
| Untitled6.ps1*(Recoverad) | Untitled7.ps1*(Recoverad) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1

| Untitled16.ps1*(Recovered) AppFinder.ps1 Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1

| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered)

1 Sservices = Get-WmiObject -Class Win3Z_Service

3 Fforeach (Sservice in $services) {

4 Write-Host "Service Name: §$(%service.Name)"

5 Write-Host "Status: $(3service.State)"”

6 Write-Host "Start Mode: $($service.StartMode)”
7 Write-Host "Process ID: $($service.ProcessId)"
8 Write-Host "-------mmmmm oo "
9
o

Status: Running
Start Mode: Manual

Service Name: webthreatdefusersvc_7435b
Status: Running
Start Mode: Auto
Process ID: 8112

Status: Running
Start Mode: Auto
Process T

Status: Running
Start Mode: Auto
Process ID: 11140

Untitled3.ps17{Recovered)

Untitled13.ps1*(Recoverad)

Untitled23.ps1*(Recovered)

Untitled28.ps1*

Ln 1654 Col 25

100%

www.alexandrumarin.com

165

http://www.alexandrumarin.com

Monitoring System Performance

Monitoring system performance is critical for ensuring a computer or server's optimal
operation. PowerShell has powerful capabilities for collecting and analyzing performance
data, which can assist you in identifying bottlenecks, tracking resource utilization, and
optimizing system performance. We will look at how to use PowerShell to monitor various
aspects of system performance in this chapter. We'll cover collecting performance data
using the Win32_PerfFormattedData classes, analyzing CPU, memory, and disk usage, and
tracking network performance metrics.

Collecting Performance Data with Win32_PerfFormattedData Classes

The Win32 PerfFormattedData classes in PowerShell provide a wealth of performance
counters and metrics that you can collect and analyze. These classes cover a wide range of
system components such as CPU, memory, disk, network, and more.

A specific performance object is represented by a Win32 PerfFormattedData class instance.
The properties of these instances include formatted performance data such as CPU usage,
memory usage, network throughput, and so on and these correspond to performance
counters. These counters monitor various aspects of system performance and provide
useful data on resource utilization.

When you get instances of the Win32 PerfFormattedData classes, you get real-time
performance data that reflects the current state of the system. This allows you to monitor
performance in real time and respond quickly to any issues that arise. The performance data
gathered can be used to analyze trends, spot patterns, and make informed system
optimization decisions. By tracking specific performance counters over time, you can
identify bottlenecks, diagnose performance issues, and implement targeted improvements.

Collecting CPU Performance Data:

ScpuData = Get-WmiObject -Class Win32_PerfFormattedData_PerfOS_Processor

foreach (Scpu in ScpuData) {
Write-Host "Processor: $(Scpu.Name)"
Write-Host "CPU Usage: $(Scpu.PercentProcessorTime)"
Write-Host " !

www.alexandrumarin.com 166

https://learn.microsoft.com/en-us/previous-versions/aa394272(v=vs.85)
http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE = m] >
File Edit View Tools Debug Add-ons Help

b & B 4 B » [B = | 8| Boo & om.-
Untitled 1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1%{Recovered) Untitled5.ps1™{Recovered)
Untitled6.ps1*(Recovered) Untitled7.ps1*{Recoverad) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recoverad)
Untitled16.ps1*(Recavered) AppFinder.psi Untitled21,ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*({Recovered)
Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* X

1 ScpuData = Get-WmiObject -Class Win3Z_PerfFormattedData PerfOS_Processor

2

3 foreach (Scpu in ScpuData) {

4 Write-Host "Processor: $(3cpu.Name)”

5 Write-Host "CPU Usage: $(3cpu.PercentProcessorTime)”
H "

8

Write-Host "----------mmmmmmmm oo

H

Ln73 Col 25 100%

Tracking Network Performance Metrics

Monitoring network performance is crucial for identifying network bottlenecks, analyzing
traffic patterns, and ensuring optimal network utilization. The
Win32_PerfFormattedData_Tcpip_Networkinterface class in PowerShell provides
performance data related to network interfaces. It offers valuable insights into network
utilization, including metrics such as bytes sent and received, packets sent and received,
errors, and more. This class allows you to monitor and analyze the performance of network
interfaces on your system.

Each instance of the Win32 PerfFormattedData Tcpip NetworkInterface class represents one
of the system's network interfaces. The Name property, which contains the name of the
network interface, identifies these instances.

As properties, the Win32 PerfFormattedData Tcpip Networkinterface class exposes various
performance counters. These counters provide information about network traffic, errors, and
other network interface-related metrics. The class contains properties that provide
formatted performance data, allowing you to easily access and analyze network utilization.
BytesTotalPerSec, BytesReceivedPerSec, BytesSentPerSec, PacketsReceivedPerSec,
PacketsSentPerSec, and other properties are commonly used.

When you query instances of the Win32 PerfFormattedData Tcpip NetworklInterface class,

www.alexandrumarin.com 167

https://learn.microsoft.com/en-us/previous-versions/aa394293(v=vs.85)
http://www.alexandrumarin.com

you get real-time performance data reflecting the network interface's current state. This
allows you to monitor network usage in real time and identify any performance issues.

Tracking Network Bandwidth Usage:

SnetworkData = Get-WmiObject -Class Win32_PerfFormattedData_Tcpip_Networkinterface

foreach (Snetworkinterface in SnetworkData) {
Write-Host "Interface: $(Snetworkinterface.Name)"
Write-Host "Bytes Received/sec: $(Snetworkinterface.BytesReceivedPersec)"
Write-Host "Bytes Sent/sec: $(Snetworkinterface.BytesSentPersec)"
Write-Host " "

EJ Administrator: Windows PowerShell ISE (] X
File Edit View Tools Debug Add-ons Help

0 & e o« Bl [runseript5) | D B« |8 (oo @o,

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1*{Recovered) Untitled5.ps1*{Recovered) |
| Untitledf.ps1*(Recovered) | Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) |
| Untitled16.ps1*(Recovered) AppFinder.psi Untitled21.ps1*(Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*(Recovered) |
| Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* X |

fnetworkData = Get-WmiObject -Class Win32_PerfFormattedData_Tcpip_NetworkInterface

—|foreach (Sne‘ta.o kInterface in &networkData) {
Write-Host "Interface: S({%networkInterface.Name)”
Write-Host "Bytes Received/sec: $(inetworkInterface.BytesReceivedPersec)"”
Write-Host "Bytes Sent/sec: $(fnetworkInterface.BytesSentPersec)”
Write-Host "-——----mmmmm e "

1
2
3
4
5
[
8
9

P5 C:\WINDOWS\system32> §networkData = Get-WmiObject -Class Win32_PerfFormattedData_Tcpip_NetworkInterface

foreach ($networkInterface in $networkData) I
Write-Host "L rface: §($networkInterface.Name)"
Write-Host rtes ceived,: $($networkInterface. BytesRece1vedPer‘ ec)™
Write-Host ($netw«:r‘k1nter‘Face Bytes;entF‘ersEc)
Write-Host

PS5 C:\WINDOWS\system32:=

Ln 19 Col 25 100%

www.alexandrumarin.com 168

http://www.alexandrumarin.com

Managing Windows Registry with WMI

Although PowerShell has specific cmdlets for reading and manipulating registry entries, keep
in mind that WMI existed before PowerShell and Microsoft provided options for accessing
and manipulating system information, and in those areas, we also have methods to
manipulate the Windows Registry.

Accessing Registry Entries with WMI

To access registry entries using WMI in PowerShell, you can leverage the StdRegProv class
from the root\default namespace. This class provides methods for reading, writing, and
modifying registry keys and values.

Retrieving Registry Key Values with WMI:

Shkim = 2147483650

Skey = "SOFTWARE\Microsoft\Windows\CurrentVersion"
Svalue = "ProgramFilesDir"

Swmi = [wmiclass]"root\default:stdRegProv"
(Swmi.GetStringValue(Shkim,Skey,Svalue)).svalue

Here's a breakdown of what each line does:

e Shkim = 2147483650: This line sets the Shklm variable to the predefined constant
HKEY_LOCAL_MACHINE value in the Windows registry. The value 2147483650
represents the registry hive HKEY_LOCAL_MACHINE. Check the table below for all
the possible values

e Skey = "SOFTWARE\Microsoft\Windows\CurrentVersion": This line assigns the Skey
variable with the registry key path. In this case, it points to the CurrentVersion subkey
under the SOFTWARE\Microsoft\Windows key.

e Svalue = "ProgramFilesDir": This line sets the Svalue variable to the name of the
registry value we want to retrieve. In this example, it's the ProgramFilesDir value.

e Swmi = [wmiclass]"root\default:stdRegProv": This line creates an instance of the
stdRegProv WMI class using the [wmiclass] accelerator. The stdRegProv class
provides methods to interact with the registry using WMI.

e (Swmi.GetStringValue($hkim,Skey,Svalue)).svalue: This line calls the GetStringValue
method of the stdRegProv WMI class to retrieve the string value associated with the
specified registry key and value name. The method takes three parameters: the
registry hive, key path, and value name. The retrieved value is accessed using the
.svalue property.

www.alexandrumarin.com 169

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/regprov/stdregprov
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wmi?view=powershell-5.1
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/regprov/getstringvalue-method-in-class-stdregprov
http://www.alexandrumarin.com

If you are interested what the WMI Registry Tree Values are, here is a table to make it much

easier:

Name Value

HKEY_CLASSES_ROOT 2147483648
HKEY_CURRENT_USER 2147483649
HKEY_LOCAL_MACHINE 2147483650
HKEY_USERS 2147483651
HKEY_CURRENT_CONFIG 2147483653
HKEY_DYN_DATA 2147483654

Modifying Registry Entries with WMI

WMI also allows you to modify registry entries using methods such as SetStringValue,
SetDWORDValue, SetBinaryValue, and more, provided by the StdRegProv class. These
methods enable you to update existing registry values or create new ones.

Modifying a Registry Key Value with WMI:

Shklm = 2147483650

Skey = "SOFTWARE\testkey"

SvalueName = "testvalue"

SnewValue = "2"

Swmi = [wmiclass]"root\default:stdRegProv"

(Swmi.SetStringValue(Shkim,Skey,SvalueName,SnewValue))

www.alexandrumarin.com

170

http://www.alexandrumarin.com

>

File Edit View Tools Debug Add-ons Help

0 & | 4 B » b m-@’;**ﬂ“:;

| Untitled ps1(Recovered) Untitled2.ps1"(Recovered) Untitled3.ps17(Recovered) copyfolder.ps1 Untitiedd.ps1*(Recovered) UntitledS.ps1"(Recovared) Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) |

| Untitled8.ps1™(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1"(Recavered) Untitled 16.ps1"(Recovered) AppFinder.ps1 Untitled21.ps17(Recovered) Untitled22 ps1*(Recovered) | &
| get-azpolicies.ps1 Untitled23.ps1*(Recovered) Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*(Recovered) Untitled27.ps1*(Recovered) Untitled28.ps1* x|

1 $hklm = 2147483650

2 Skey = "SOFTWARE\testkey"
3 SvalueName = "testvalue”
4 S$newValue = "2"

T 4

(3

Swmi = [wmiclass]“root\default:stdRegProv”
(Swmi . SetStringvalue($hkim, Skey, SvalueName, SnewValue))

[Registry Editor - (m] x
File Edit View Favorites Help
Computer\ HKEY_LOCAL_MACHINE\SOFTWARE testkey

> 7 Minnetonka Audio Software Name Type Data
Mozl i Defauit REG_SZ (value not set)
> Bl mozila.org 2b)testvalue REG_SZ 2
> © MozillaPlugins -
MyApp
MyCompany
Notepad-++
0BS Studio
$wmi = [wmiclass]"root\default :stdRegProv" > 0DBC
(Swmi . SetStringValue(Shk1m, Skey, SvalueName, 4 = OEM
> 77 OpenSSH
__GENUS 12 OpenVPN
__CLASS : _PARAMETERS
—SUPERCLASS 4 Partner
__DYNASTY PARAMETERS » T Policies
__RELPATH 5> 7 PSAppDeployToolkit
—PROPERTY_COUI Realtek
__DERTVATION i ealte
__SERVER RegisteredApplications
__NAMESPACE > = RilSetup
—_PATH
Returnvalue > T Setup
PSComputerName > T SOFTWARE
5> 7 SynclntegrationClients
5> 7 Tableau

TAP-Windows
> TeamViewer

PS C:\WINDOWS\system32>

> © TechSmith
- testkey

> 77 VideoLAN

> =7 VMware, Inc.
> 7 voidtools

>

WOWB432Node

Completed Ln25 Col25 | 100%

Here's a breakdown of what each line does:

e Shkim = 2147483650: This line sets the Shkim variable to the predefined constant
HKEY_LOCAL_MACHINE value in the Windows registry. The value 2147483650
represents the registry hive HKEY_LOCAL_MACHINE.

e Skey = "SOFTWARE\testkey": This line assigns the Skey variable with the registry key
path. In this example, it points to a subkey named "testkey" under the SOFTWARE key.

e SvalueName = "testvalue": This line sets the SvalueName variable to the name of the
registry value we want to modify. In this case, it's the "testvalue" value.

e SnewValue = "2": This line assigns the SnewValue variable with the new value that we
want to set for the registry value.

e Swmi = [wmiclass]'root\default:stdRegProv": This line creates an instance of the
stdRegProv WMI class using the [wmiclass] accelerator. The stdRegProv class
provides methods to interact with the registry using WMI.

e (Swmi.SetStringValue(Shkim,Skey,SvalueName,SnewValue)): This line calls the
SetStringValue method of the stdRegProv WMI class to set the string value for the
specified registry key and value name. The method takes four parameters: the
registry hive, key path, value name, and the new value to set.

www.alexandrumarin.com 171

http://www.alexandrumarin.com

Working with Network Configuration

Gathering Network Interface Information with Win32_NetworkAdapter
Class

The Win32 NetworkAdapter class provides a powerful way to gather information about
network interfaces on your system. It provides a comprehensive set of properties and
methods to retrieve detailed information about network adapters on a Windows system. This
class is especially useful for managing network interfaces, monitoring network connectivity,
and gathering network-related data.

The class offers several methods that allow you to perform actions related to network
adapters. These methods include enabling or disabling a network adapter, resetting the
adapter, and more. These methods can be useful for troubleshooting network connectivity
issues or managing network interfaces programmatically.

To retrieve network adapter information, you can use PowerShell's Get-WmiObject or
Get-CimlInstance cmdlets with the Win32_NetworkAdapter class. Here's an example:

SnetworkAdapters = Get-WmiObject -Class Win32_NetworkAdapter

foreach (Sadapter in SnetworkAdapters) {
Write-Host "Interface Name: $S(Sadapter.Name)"
Write-Host "Description: $(Sadapter.Description)"
Write-Host "MAC Address: $(Sadapter. MACAddress)"
Write-Host "IP Addresses: $(Sadapter.IPAddress)"
Write-Host " "

www.alexandrumarin.com 172

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-networkadapter
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/cimcmdlets/get-ciminstance?view=powershell-7.3
http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE = O *
File Edit View Tools Debug Add-ons Help

®H & U B »[usme)) =8| Hoolno.

| Untitled 1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitled4.ps1*(Recovered) Untitled5.ps1*(Recovered) |
| Untitled8.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) |
| Untitled 16.ps1*(Recovered) AppFinder.ps1 Untitled2 1.ps1*{Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*(Recovered) |
| Untitled24 ps1*(Recovered) Untitled?5.ps1*(Recavered) Untitled26.ps1*(Recovered) Untitled?7 ps1*[Recovered) Untitled28.ps1* X |

1 SnetworkAdapters = Get-WmiObject -Class Win32_NetworkAdapter

2
3 [foreach (Sadapter in SnetworkAdapters) {

4 Write-Host "Interface Name: $(fadapter.Name)™

5 Write-Host "Description: $(Sadapter.Descriptien)”

6 Write-Host "MAC Address: $(Sadapter.MACAddress)”

7 Write-Host "IP Addresses: $(3%adapter.IPAddress)”

8 Write-Host "--—---mmm e "
9
o

}

[

Interface Name: WAN Miniport (PPTP)
Description: WAN Miniport (PPTP)

WAN Miniport (PPPOE)
: WAN Miniport (PPPOE)

N Miniport (Networ
FC:BF:20:52:41:53

Ln 97 Col 25 100%

In the above example, we retrieve all network adapters using the Get-WmiObject cmdlet with
the Win32_NetworkAdapter class. We then iterate through each adapter and display its
relevant information, such as the interface name, description, MAC address, and IP
addresses.

Configuring Network Settings using WMI

In addition to gathering network information, you can also leverage WMI to configure
network settings. This allows you to modify various properties of network adapters, such as
IP address, subnet mask, default gateway, DNS settings, and more. Let's explore how to
configure network settings using WMI in PowerShell.

Swmi = Get-WmiObject -Class Win32_NetworkAdapterConfiguration -Filter
"IPEnabled="True"

foreach (Sadapter in Swmi) {
Set a static IP address and DNS settings

www.alexandrumarin.com 173

http://www.alexandrumarin.com

Sadapter.EnableStatic("192.168.1.100", "255.255.255.0")
Sadapter.SetDNSServerSearchOrder(@("8.8.8.8", "8.8.4.4"))

Set the default gateway
Sadapter.SetGateways(@("192.168.1.1"))

Write-Host "Network settings configured for: $(Sadapter.Description)"

In the above example, we retrieve network adapters with enabled IP configurations using the
Get-WmiObject cmdlet with the Win32_NetworkAdapterConfiguration class and the
IPEnabled="True' filter. We then iterate through each adapter and use the provided methods
to configure static IP address, subnet mask, default gateway, and DNS server settings.

www.alexandrumarin.com 174

http://www.alexandrumarin.com

Event Monitoring and Handling

Events are critical in comprehending system behavior, detecting changes, and automating
tasks based on specific conditions. We can easily access and respond to various system
events thanks to PowerShell's integration with Windows Management Instrumentation
(WMI). We will go over various aspects of event monitoring and handling, such as monitoring
system events with WMI and effectively responding to events with PowerShell.

Monitoring System Events with WMI

WMI provides a powerful infrastructure for monitoring system events. By leveraging WMI
event classes, we can subscribe to specific events and receive notifications when they occur.
Some common system events that we can monitor include process creation, file
modification, network connectivity changes, and more. Here are the steps to monitor system
events with WMI:

1. ldentify the event class: Choose the WMI event class that corresponds to the system
event you want to track. Each event class represents a specific type of event and
includes properties for capturing event information.

2. Set up an event consumer: Create an event consumer who will be in charge of
handling the events. Creating a WMI query or a permanent event consumer that
defines the criteria for receiving events is required.

3. Register the event query: To register the event query, use the Register-WmiEvent
cmdlet in PowerShell. To start event monitoring, specify the event class and the event
consumer.

4. Receive and process events: As events occur, PowerShell will trigger the event
consumer, allowing you to access event properties and perform actions based on the
event data.

Monitoring process creation events:

SeventQuery = "SELECT * FROM __InstanceCreationEvent WITHIN 5 WHERE
Targetinstance ISA 'Win32_Process"
Register-WmiEvent -Query SeventQuery -Action {

Sprocess = Sevent.SourceEventArgs.NewEvent.Targetinstance

Write-Host "New process created: $(Sprocess.Name), PID: $(Sprocess.Processid)"

www.alexandrumarin.com 175

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/register-wmievent?view=powershell-5.1
http://www.alexandrumarin.com

Q Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help

N a3 4 (ERPN [Bl x| 8|Boo &om.

Untitled 1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitled4.ps1*(Recovered) Untitled5.ps1*(Recovered)
Untitled8.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered)
Untitled 16.ps1*(Recovered) AppFinder.ps1 Untitled2 1.ps1*{Recovered) Untitled22.ps1*(Recovered) get-azpolicies.ps1 Untitled23.ps1*(Recovered)
Untitled24.ps1*(Recovered) Untitled25.ps1*(Recovered) Untitled26.ps1*{Recovered) Untitled27 ps1*(Recovered) Untitled28.ps1* x

feventQuery = "SELECT * FROM __InstanceCreationEvent WITHIN 5 WHERE TargetInstance ISA 'Win3Z_Process'"
—Register-WmiEvent -Query feventQuery -Action {
$process = Sevent.SourceEventArgs.NewEvent. TargetInstance
Write-Host "New process created: $(Sprocess.Name), PID: 5(Sprocess.ProcessId)”

NG TR

DOWSY system32> $eventQuery = "SELECT * FROM _ InstanceCreationEvent WITHIN 5 WHERE TargetInstance ISA 'Win32_Process'"
Register-WmiEvent -Query $eventQuery -Action {
$process = fevent.SourceEventArgs.NewEvent.TargetInstance
Write-Host "New process created: $($process.Name), PID: $($process.ProcessId)”

P5JobTypeName State HasMoreData Location

dfg2fa07-954...

PS C:\WINDOWS\system32:»

Ln15 Cel 25 100%

In the above example, we register an event query to monitor process creation events. When a
new process is created, the event consumer triggers and retrieves information about the
process, such as the name and process ID.

Responding to Events with PowerShell

Once we have set up event monitoring, PowerShell allows us to respond to events
dynamically. We can define actions to perform when specific events occur, enabling us to

automate tasks or trigger specific workflows. Here are some ways to respond to events with
PowerShell:

e Execute scripts or commands: PowerShell can execute specific scripts or commands
to perform predefined actions when an event occurs. This could include running a
script, invoking a function, or executing external programs.

e Modify system configurations: Changes in system configuration can be triggered by
events. PowerShell can adjust settings, update registry entries, modify services, and
perform any other required configuration changes automatically.

www.alexandrumarin.com 176

http://www.alexandrumarin.com

e Send notifications or alerts: When certain events occur, PowerShell can send
notifications or alerts. To notify system administrators or users, this could include
sending an email, displaying a pop-up message, or generating log entries.

Responding to file modification events:

Squery = @"
Select * from __InstanceCreationEvent within 10

where targetinstance isa 'Cim_DirectoryContainsFile'

and targetinstance.GroupComponent = 'Win32_Directory.Name="c:\\\\temp"

'@

Register-WmiEvent -Query Squery -Sourceldentifier “MonitorFiles”
SfileEvent = Wait-Event -Sourceldentifier “MonitorFiles”
SfileEvent.SourceEventArgs.NewEvent. Targetinstance.PartComponent

a2

File Edit View Tools Debug Add-ons Help

e | & g x»|9 P BB |% |8 Eoo| & om.

Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled2.ps1*(Recovered) copyfolder.ps1 Untitled4.ps1*(Recovered) Untitled5.ps1*(Recovered) Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered)
Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) Untitled16.ps1*(Recovered) AppFinderps1 Untitled21.ps1*(Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps1

Untitled28.ps1"(Recovered) Untitled28,ps1"(Recovered) Untitled30,ps1"(Recovered) Untitied31.ps1"(Recovered) Untitled32.ps1*(Recovered) Untitled33.ps1"(Recovered) Uniitled34psT* Untitied35.ps1*
1 El$query = @"
Select = from _InstanceCreationEvent within 10
where targetInstance isa 'Cim_DirectoryContainsFile Sl
and targetInstance.GroupComponent = "Win32_Director:
ol > Local Disk (C) > Temp
11 Register-WmiEvent -Query $query -SourceIdentifier “Md

12 sfileEvent — Wait-Event -SourceIdentifier “MonitorFi
13 sfileEvent. SourceEventArgs. NewEvent. TargetInstance. P4

: Invalid
rrorld : Paramet

2> get-event
w B InstallShield |
Squery = @"
B o B Intel
Select * from __Ii anceCreationEvent within 10
where targetInstance isa 'Cim_DirectoryContainsFile”

and targetInstance.GroupComponent = "Win32_Directory.Name=

Register-wmiEvent —Query $query —Sourceldentifier
$fileEvent d
Event

Completed Ln 13 Col 65

This code sets up an event monitor to detect the creation of files within a specified directory
using WMI (Windows Management Instrumentation). Here's a breakdown of the code:

www.alexandrumarin.com 177

100%

http://www.alexandrumarin.com

e The Squery variable defines a WMI event query using the __InstanceCreationEvent
class. It specifies that we want to monitor the creation of instances (files) within a
specific directory.

e The within 10 clause indicates that we want to capture events within a 10-second
timeframe.

e The targetinstance isa 'Cim_DirectoryContainsFile' condition filters the events to
instances (files) contained within a directory.

e The targetinstance.GroupComponent condition further narrows down the events to
the specified directory path, in this case, 'c:\\\temp'.

e The Register-WmiEvent cmdlet registers the WMI event using the provided Squery
and assigns it the source identifier "MonitorFiles".

e The Wait-Event cmdlet waits for the event to occur and assigns it to the S$fileEvent
variable.

e Finally, the $fileEvent.SourceEventArgs.NewEvent.Targetinstance.PartComponent
expression retrieves the path of the newly created file from the event.

This code sets up a file creation event monitor for the "c:\temp" directory and captures the
path of the newly created file when the event occurs. You can customize the directory path
and perform additional actions within the event handler script block based on your
requirements.

www.alexandrumarin.com 178

http://www.alexandrumarin.com

GUI Development with PowerShell

Introduction to GUI Development

What is a GUI?

A Graphical User Interface (GUI) is a graphical representation of a program'’s functionality
that enables users to interact with the software through the use of graphical elements such
as buttons, menus, and text fields. GUIs, as opposed to command-line interfaces, offer a
more intuitive and user-friendly way to navigate and operate applications. GUIs in PowerShell
allow script developers to create visually appealing and interactive tools that allow users to
perform a variety of tasks with ease.

Benefits of GUI in PowerShell

Integrating GUIs into PowerShell scripts offers several advantages, enhancing the overall
user experience and extending the capabilities of command-line automation:

GUIs provide users with a familiar interface, reducing the learning curve and making complex
tasks more accessible to non-technical users.

GUIs can also display real-time progress, status updates, and error messages, allowing users
to efficiently monitor script execution and troubleshoot issues. GUIs also make repetitive
tasks easier to automate by presenting options, checkboxes, and dropdown menus, reducing
the need for manual input.

GUIs use graphs, charts, and tables to present complex data in a visually appealing and

understandable format. When problems arise, GUIs can include error-handling mechanisms
that direct users to the appropriate actions.

GUI Development Tools and Approaches

PowerShell offers several approaches to GUI development, each catering to different needs
and expertise levels of script developers.

www.alexandrumarin.com 179

http://www.alexandrumarin.com

Windows Forms (WinForms)

WinForms is a traditional GUI framework that enables developers to create Windows-based
applications with a wide range of controls and customization options. PowerShell can utilize
.NET's Windows Forms to build GUIs programmatically or using tools like Visual Studio.

Creating a simple WinForms GUI in PowerShell:

Add-Type -AssemblyName System.Windows.Forms
Sform = New-Object Windows.Forms.Form
Sform.Text = "My PowerShell GUI"

Sform.Size = New-Object Drawing.Size(400, 200)
Sbutton = New-Object Windows.Forms.Button
Sbutton.Text = "Click Me!"

Sbutton.Add_Click({ Write-Host "Button Clicked!" })
Sform.Controls.Add(Sbutton)

Sform.ShowDialog()

a
File Edit Wiew Tools Debug Add-ons Help
(= = I ERPN |« |8 [Boo0| & m.
| Untitled 1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1*(Recovered) Untitled5.ps1*(Recovered) |
| Untitleds.ps1*(Recovered) Untitled7.ps1*{Recovered) Untitled8.ps1™{Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*[Recovered) Untitled16.ps1%(Recavered) | -
| AppFinderps1 Untitled21.ps1*(Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) Untitled34.ps1*(Recovered) | !
| Untitied35.psT*(Recovered) Untitled36.ps1*(Recovered) Untitled37.ps1*(Recovered) | Untitleci38 psi*{Recovered) Untitled3%.ps1*(Recovered) Untitled40.ps1*(Recovered) x|
i Add-Type -AssemblyName System.Windows.Forms

3 $form = New-Object Windows.Forms.Form
4 Sform.Text = "My Powershell GUI"

5 S$form.Size = New-Object Drawing.Size(400, 200)

6

7 Sbutton = New-Object Windows.Forms.Button

a8 Sbutton.Text = "Click Me!"

9 Sbutton.Add_Click({ Write-Host "Button Clicked!” })

11 $form.Controls. Add($button)

13 $form.ShowDialog()

a5 My PowerShell GUI = O x

AssemblyMName System.WindEei=3vE]

t Windows. Forms. Form
Powershell GuI™
Object Drawing.Size(400, 200)

$button = New-Object Windows.Forms.Button
Sbutton.Text = "Click Me!

$button. Add_Click({ Write-Host "Button Clicked!™ })
$Form.Controls. Add($button)

$form. ShowDialog()

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. Ln 16 Col1 100%

www.alexandrumarin.com 180

http://www.alexandrumarin.com

Windows Presentation Foundation (WPF)

WPF is a more modern and flexible GUI framework, allowing developers to create rich,
multimedia-oriented interfaces with advanced styling and data-binding capabilities.
PowerShell can integrate with WPF to create visually appealing and responsive applications.

Creating a simple WPF GUI in PowerShell:

[void][System.Reflection.Assembly]::LoadWithPartialName('presentationframework’)
Swindow = New-Object Windows.Window

Swindow.Title = "My PowerShell GUI"

Swindow.SizeToContent = "WidthAndHeight"

Sbutton = New-Object Windows.Controls.Button

Sbutton.Content = "Click Me!"

Sbutton.Add_Click({ Write-Host "Button Clicked!" })

Swindow.Content = Sbutton

Swindow.ShowDialog()

[>:]

File Edit View Tools Debug Add-ons Help

B& B 4 EIP-N [~ - 1) ’Z o B .

‘ Untitled1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1*(Recovered) Untitled5.ps1*(Recovered) Untitled6.ps1*(Recovered)
| UntitledT.ps1*{Recoverad) | Untitleds.ps1*(Recovered) | SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) Untitled16.ps1*(Recavered) AppFinder.psi

&
‘ Untitled21.ps1*(Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps 1*(Recovered) | Untitled40.ps1*(Recovered) Untitledd6.ps1*(Recovered) Untitled47.ps1*(Recoverad) |
‘ Untitled48.ps1*(Recovered) Untitled49.ps1*(Recovered) Untitled50.ps1*(Recovered) Untitled31.ps1*(Recovered) I Untitled52.ps1*(Recovered) Untitled53.ps1* X |
1 [void] [System.Reflection.Assembly] : :LoadwithPartialName(presentationframework')
2
3 Swindow = New-Object W vs. Window
4 Swindow.Title = "My P
5 Swindow.S5izeToContent
6
8

dthandHedight”

Sbutton = New-Object Windows.Controls.Button
Shutton.Content = "Click Me!"
9 Shutton.Add_Click({ Write-Host "Button Clicked!” })

10

11 Swindow.Content = Shutton

12 g

13 Swindow. ShowDialog()

14 Click Me!

PS C:\WINDOWS\system32> [void] [System.Reflection.Assembly]::LoadWithPartialName(presentationframework')

$windos ew-0
$window.Title = "My Power
$window. SizeToContent = "WidthAndHeight"

$button = New-Obj ind ontrols.Button
$button.Content = “Cli
Sbutton.Add_Click({ write “Button Clicked!” })

$window.Content = $button

$window. ShowDialog()

Running script { selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. Ln15 Col 1 100%

www.alexandrumarin.com 181

http://www.alexandrumarin.com

PowerShell GUI Libraries

Several third-party libraries and modules have been developed to simplify GUI development
in PowerShell. These libraries provide pre-built controls, templates, and functions, allowing
users to quickly create powerful GUIs without extensive coding.

Here are some popular PowerShell GUI libraries that provide pre-built controls and functions
to simplify GUI development:

Windows Forms PowerShell Module (WinFormPS)

This module provides an easy-to-use way to create Windows Forms GUIs in PowerShell. It
includes functions to create buttons, textboxes, labels, and other controls with just a few
lines of code. Before using the below code, we need to install the WinFormPS module. To do
this we have two options:

e Download from PowerShell Gallery
e Download from GitHub Repository

We are going to use the easier method and that is to install it directly from the PowerShell
Gallery. All we need to do is run this command in an elevated PowerShell command:

Install-Module -name WinFormPS

[J) B Administrator: Windows Powe X + -

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
PS C:\Users\User> Install-Module WinFormpPs

Untrusted repository

You are installing the modules from an untrusted repository. If you trust this repository, change its
InstallationPolicy value by running the Set-PSRepository cmdlet. Are you sure you want to install the modules from
'"PSGallery'?

[¥] vYes [A] Yes to ALl [N] No [L] No to ALl [S] Suspend [?] Help (default is "N"): a

www.alexandrumarin.com 182

https://github.com/lazywinadmin/WinFormPS
http://www.alexandrumarin.com

There are a few examples on the GitHub Page that you can check out, one example done

with WinFormsPS looks like this:

File Edit View Tools Debug Add-ons Help

SRR E SEBN B= |8 BooloE.

‘ Untitled5.ps1*(Recovered) Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1%(Recovered) SearchApplicationGetUninstal Key.ps1

| Untitled13.ps1"(Recovered) Untitled16,psT"(Recovered) AppFinderps1 | Untitled21.ps1*(Recovered) Untitled27.ps1"(Recovered) get-azpoliciesps]

| Untitled33.ps1°(Recoversd) Untitled40.ps1*(Recovered) Untitled46 ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled53.ps1*(Recovered)

| Untitled54.ps1®(Recoversd) Untitled55.ps1*(Recovered) Untitled56.ps1*(Recovered) UntitledS7.ps1*(Recovered) Untitled58.ps1*(Recovered)

| Untitled1.ps1*{Recovered) X | Untitled2.ps1*(Recovered)

181
182 h

Untitled3 ps1*(Recovered) copyfolder.ps1 Untitled4.ps1*(Recovered)

184 # --End User Generated Script--

186 [#region Generated Events

189 $Form_sStateCorrection_Load= =)

191 #Correct the initial state of the form to
192 $formwinFormPSAddwFDataGr . Windowstate = SI
193 3

195 $Form_Cleanup_FormClosed=

197 #Remove all event handlers from the contrg

3 oLy T g
$buttonAddColumn. add_C1i ck($buttonAddColumn_Click)

#
datagridviewl
#

$datagridviewl. ColumnHeadersHeight:
Sdatagridviewl.Location = "12, 12°
Sdatagridviewl. Name = 'datagridviewl®
Sdatagridviewl.Size = "498, 214"
$datagridviewl. TabIndex = 0
$FormWinFormPSAddWFDatatr . ResumeLayout ()
#endregion Generated Form Code

Add Column

#Save the initial state of the form

$InitialFormWindowState = §$FormWinFormPSAddwFDataGr.WindowState
#Init the correct the initial state of the form
$FormWinFc add_Load($Form_StateCorrection_Load)
#Clean up the control ev

$FormWinFormPSAddWFDataGr . add_FormClosed ($Form_Cleanup_FormClosed)
#show the Form

return $FormiinFormPSAddWFDataGr . ShowDialog()

} #End Function

#call the form
Call-Add-WFDataGridViewColumn_psf | Out-Null

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger.

Commands X
Modules: | All
Name:

A
Add-AppProvisionedSharedPackageContainer
Add-AppSharedPackageContainer
Ada-AppvClientConnectionGroup
Adad-AppvClientPackage
Add-AppvPublishingServer
Ada-AppxPackage
Add-AppxProvisionedPackage
Add-Appxvolume

Add-AzADAppPermission
Add-AzADGroupMember
Add-AzknalysisServicesAccount
Add-AzApiManagementApTToGateway
Add-AzApiManagementApToProduct
Add-AzApiManagementProductToGraup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzhpplicationG:
Add-AzApplicationG:
Add-AzhpplicationGatewaySackendHitipSetting
Add-AzApplicationGatewayBackendSetting

yAuthenticationCeriificate

/BackendAddressPool

Add-AzApplicationG:
‘Add-AzApplicationGatewayFrontendPort
Add-AzApplicationGatewayHtipListener
Add-AzApplicationG:
Add-AzApplicationG: yiPConfiguration
Add-AzApplicationGatewayListener

yHitpListenerCustomError

Add-AzApplicationGatewayPrivateLinkConfiguration
Add-AzApplicationGatewayProbeCanfig

dd-AzApplicationGa tConfiguration

Add-AzApplicationGatewayRequestRoutingRule
Add-AzApplicationGatewayRewriteRuleSet

Ln 1120 Col 1

100%

WPFPS PowerShell Module

This module enables PowerShell developers to work with Windows Presentation Foundation

(WPF) controls, providing more flexibility and advanced features for GUI development.
Before using the below code, we need to install the WinFormPS module. To do this we have

two options:

e Download from PowerShell Gallery
e Download from GitHub Repository

We are going to use the easier method and that is to install it directly from the PowerShell
Gallery. All we need to do is run this command in an elevated PowerShell command:

Install-Module -Name WPFPS

There are a few examples on the GitHub Page that you can check out, one example done

with WPFPS looks like this:

www.alexandrumarin.com

183

https://github.com/lazywinadmin/WPFPS
http://www.alexandrumarin.com

‘g

File Edit View Tools Debug Add-ons Help

A = O > B = |8 [Fool &mE.

| Untitled5.ps1*(Recovered) Untitled6.ps1*({Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered)

| Untitled13.ps1"(Recovered) Untitled16.ps1*(Recovered) AppFinder.psl | Untitled21.pst*(Recovered) Untitled27.ps1*(Recoverad)
| Untitled33.ps1*(Recovered) Untitled40.ps1*(Recovered) Untitled46.ps1*(Recovered) Untitled52.ps1*(Recovered)

| Untitled54.ps1*(Recovered) Untitled55.ps1*(Recovered) Untitled56.ps1*(Recovered) Untitled57.ps1*(Recovered)
|Unt\l\ed1psV[RE(ovErEd) X | Untitled2.ps1*(Recovered) Untitled3.ps1*{Recovered) copyfolder.ps1

252 Set-WPFWindowVariable -Window $Window -XAML $Xaml -Prefix WPF

Find the Variable of this environment
#Get-Variable WPF*

Sarray = S((Get-Process).Name |Select-Object -Unique)

259 # GET TO WORK
260 Add-WPFComboBoxItem -ComboBox SWPFcomboBox -Item (Get-Service).ServiceName

262 P> | —
263 [EISWPFbuttonRemoveSelected. Add_C1ick({ =

264 Remove-WPFComboBoxItem -SelectedItem

266 |1}

267 Remove Selected

268 # Show the Window
269 Show-WPFWindow -Window SWindow

Generate Variables for each Controls
Set-wWPFWindowvariable -Window $Window -XAML $Xaml -Prefix WPF

Find the Variable of this environment
#Get-Variable WPF*

Sarray = $((Get-Process).Name |Select-Object -Unique)
GET TO WORK
Add-WPFComboBoxItem -ComboBox $WPFcomboBox -Item (Get-Service).ServiceName

SWPFbuttonRemoveSelected. Add_Click({

=
Remove-WPFComboBoxTItem -SelectedItem —ComboBox $WPFcomboBox

B
Show the Window

perable program.

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+E to break into debugger.

SearchApplicationGetUninstallKeyps1

Untitled53.ps1*(Recovered)

Untitled38.ps1*(Recovered)

Untitledd.ps1"(Recovered)

Check th

Commands X

Modules: | All

Name:

A

Add-AppProvisionedSharedPackageContainer
Add-AppSharedPackageContainer
Add-AppuClientConnectionGroup

Add-AppvClientPackage
Add-AppvPublishingServer
Adg-AppxFackage

Add-AppxProvisionedPackage

Add-AppxVolume
Add-AzADAppPermission
Add-AzADGroupMember

Add-AzAnalysisServicesAccount
Adg-AzApiMEnagementApToGateway
Add-AzApiManagementApiToProduct
Add-AzApiManagementProdudToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup

Ada-AzApplicationGatewayAutnenticationCertificate

Add-AzApplicationGatewayBackendAddressPaol
Add-AzApplicationGatewayBackendHttpSetiing

Add-AzApplicationGatewayHttpListener

Add-AzApplicationGatewayHittpListenerCustomErrar

\dd-AzApplicationGats

rivateLinkConfiguration
robeConfig

tConfiguration

Adg-AzApplicationGatewsyRequestROUtingRule

Ln 1440 Col1

ewriteRuleSet

100%

Universal Dashboard

Universal Dashboard is a PowerShell web framework that lets you create interactive

web-based dashboards and GUIs. It comes with a variety of controls, charts, and themes for

creating feature-rich web applications.

It is intended to assist PowerShell developers in creating modern and visually appealing web

applications without requiring extensive knowledge of web development technologies such

as HTML, CSS, or JavaScript.

PowerShell is used to define the Ul components, create dynamic content, and handle user

interactions in Universal Dashboard. This means that developers can build web applications

using their existing PowerShell skills rather than learning new programming languages or

frameworks.

Universal Dashboard is cross-platform, meaning it can run on Windows, macOS, and Linux.

This enables developers to host their dashboards on a variety of platforms and web servers,

allowing for greater deployment flexibility.

Charts, tables, grids, cards, buttons, and form controls are among the interactive

components supported by the framework. These components are simple to incorporate into

the dashboard, allowing users to interact with the data and perform various actions.
Authentication and authorization mechanisms are supported by Universal Dashboard,
allowing developers to secure their dashboards and restrict access to specific users or

groups.

www.alexandrumarin.com

184

http://www.alexandrumarin.com

Developers can use the framework to create RESTful APIs that can be used to interact with
other systems or data sources. This allows for data integration as well as real-time data
updates from external sources.

For more information check out their official website.

In this example we only installed the Universal dashboard and the PSUServer using the
following commands:

Install-Module Universal
Import-Module Universal
Install-PSUServer

EN Administrator: Windows PowerShell = [m] *

[Yes to A1l [N] No [L] Mo to All [S] Suspend [?] He

Writing web request
Writing request stream... (Number of bytes written: 7284496)

count> import-module universal

to All [S] Suspend
mport-module universal
Install-PSUServer

After the installation has completed, we can visit Universal at localhost:5000:

www.alexandrumarin.com 185

https://docs.powershelluniversal.com/get-started
http://www.alexandrumarin.com

PoshGUI

PoshGUI is an online editor that allows you to design PowerShell GUIs visually. It generates
the PowerShell code for your GUI design, saving you time and effort in manual coding.

To create a simple GUI using PoshGUI follow these steps:

Visit https://poshgui.com/
Use the drag-and-drop interface to design your GUI, adding buttons, text boxes, and
other controls.

e Click on the "Generate Script" button to get the PowerShell code for your GUI.

www.alexandrumarin.com 186

https://poshgui.com/
http://www.alexandrumarin.com

A D Untitled - POSHGUI 4F

& TR & ‘app.poshgui.com,

P.hsm DESIGNER eEs GOy EERLS B sawveE R ONEW sk LKE © FILAIQOCXL GHQIUBEY@CAZLG COM
os|

Home

B Documentation
TextBox
PROPERTIES EVENTS
& My Projects Button
[WPF Designer Label HANE N
DO WinForms Designer e — bution APPEARANCE v
b3 Cmdlet Builder CheckBox LAYOUT v
<> CodeEditor
ComboB:
amboBox BEHAVIOUR v
= PublicRepository ListView
ListBox
RadioButton
Panel 28
Bod
Groupbox
MaskedTextBox

ProgressBar
DataGridView
EnorProvider

ToolTip

www.alexandrumarin.com 187

http://www.alexandrumarin.com

PowerShell GUI Basics

Overview of Windows Forms and WPF

Windows Forms and Windows Presentation Foundation are two popular frameworks for
creating graphical user interfaces (GUIs) with PowerShell (WPF). Both frameworks allow you
to create interactive and visually appealing applications, but they differ in terms of design
and capabilities.

Windows Forms is the older and simpler GUI framework. The user interface is built using
pre-built controls and is based on the traditional Win32 API. While Windows Forms is simple
to learn and use, its design and customization options are limited in comparison to WPF.

Windows Presentation Foundation (WPF) is a more modern and versatile graphical user
interface (GUI) framework that was introduced with.NET Framework 3.0. It defines the user
interface using XAML (Extensible Application Markup Language), which provides greater
flexibility and advanced features such as animation, data binding, and vector graphics. WPF
enables a more visually appealing and customizable design, making it ideal for developing
sophisticated applications.

Choosing the Right GUI Framework

When it comes to choosing the right GUI framework for your PowerShell application, there
are a few key considerations to keep in mind. Let's take a closer look at the two primary
options: Windows Forms and Windows Presentation Foundation (WPF).

Windows Forms is an excellent choice for simpler applications with simple user interfaces.
It's simple to learn and useful for basic utility tools or displaying information without
requiring complex designs. WPF, on the other hand, may be a better option if your application
requires a more visually rich and modern interface. WPF's advanced features, such as data
binding, styling, and templating, enable you to create visually stunning and interactive user
experiences.

WPF's data binding capabilities are unrivaled if your application revolves around data
manipulation, visualization, or presentation. It makes it easier to connect your data to the
user interface and allows for dynamic and real-time updates.

WPF is the clear winner for applications that require custom theming and a distinct look and
feel. Its use of XAML to separate design and logic allows for seamless theming and
reusability of styles throughout your application.

Furthermore, if animations and graphics are important in your application, WPF's built-in
support for animations, vector graphics, and multimedia provides you with the tools to create

www.alexandrumarin.com 188

http://www.alexandrumarin.com

visually appealing effects.

However, it is important to note that WPF has a steeper learning curve, particularly for those
unfamiliar with XAML and the MVVM pattern. Windows Forms, on the other hand, is more
user-friendly and simple to learn.

Understanding GUI Elements and Controls

When creating GUI applications in PowerShell using Windows Forms, various GUI controls
are available to design interactive and user-friendly interfaces. Each control serves a specific
purpose and can be customized to meet the needs of the application. The following are
some examples of common GUI controls available in Windows Forms for PowerShell:

e Form (System.Windows.Forms.Form): The main window of the application. It

contains other controls and provides the overall layout of the GUI.

e Label (System.Windows.Forms.Label): Used to display text or description on the form
to provide information or instructions to the user.

e TextBox (System.Windows.Forms.TextBox): Allows the user to enter text or data. It
can be used for input or display purposes.

e Button (System.Windows.Forms.Button): Triggers an action when clicked by the user.
It executes a script block or a function when the button is pressed.

e CheckBox (System.Windows.Forms.CheckBox): Represents a checkable box that
allows the user to select or deselect an option.

e RadioButton (System.Windows.Forms.RadioButton): Presents a group of options
where only one can be selected at a time. It is used in combination with other radio
buttons to create mutually exclusive choices.

e ComboBox (System.Windows.Forms.ComboBox): Combines a TextBox and a
ListBox. It allows the user to select from a list of options or type a custom value.

e ListBox (System.Windows.Forms.ListBox): Displays a list of items that the user can
select. Supports single or multiple item selection.

e CheckListBox (System.Windows.Forms.CheckedListBox): Similar to ListBox but
allows the user to check multiple items from the list.

e ProgressBar (System.Windows.Forms.ProgressBar): Visualizes the progress of a
task or operation. Useful for indicating completion status.

e DateTimePicker (System.Windows.Forms.DateTimePicker): Enables the user to pick
a date or time from a calendar or dropdown.

e PictureBox (System.Windows.Forms.PictureBox): Displays images on the form.
Useful for adding visual elements to the GUL.

e MenuStrip (System.Windows.Forms.MenusStrip): Creates a menu bar at the top of the
form. It contains menu items that can have submenus.

e ToolStrip (System.Windows.Forms.ToolStrip): Similar to the MenuStrip, but used for
creating toolbars with buttons and other controls.

e TabControl (System.Windows.Forms.TabControl): Provides a tabbed layout to
organize multiple controls. Each tab displays different content.

www.alexandrumarin.com 189

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.label?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.button?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.checkbox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.radiobutton?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.listbox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.checkedlistbox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.progressbar?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.datetimepicker?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.picturebox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.menustrip?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrip?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.tabcontrol?view=windowsdesktop-7.0
http://www.alexandrumarin.com

e GroupBox (System.Windows.Forms.GroupBox): Creates a container to group related
controls together visually.

e Panel (System.Windows.Forms.Panel): A container control used to group and
manage other controls. Useful for organizing complex layouts.

e MessageBox (System.Windows.Forms.MessageBox): Not a control, but a static class
that shows pop-up messages to display information or notifications to the user.

These are just a few of the most common GUI elements and controls used in PowerShell
when developing Windows Forms applications. To create a dynamic and responsive user
interface, each control can be customized with various properties and event handlers. The
integration of PowerShell with Windows Forms enables developers to easily create GUI
applications that provide a familiar and consistent user experience.

Let's start by creating a basic GUI application using Windows Forms. We'll build a simple
calculator with addition and subtraction functionalities. First, we need to load the required
assembly for Windows Forms:

Add-Type -AssemblyName System.Windows.Forms

Next, we'll create the main form and add the necessary controls:

Sform = New-Object Windows.Forms.Form
Sform.Text = "Simple Calculator"
Sform.Size = New-Object Drawing.Size(300, 200)

StextBox1 = New-Object Windows.Forms.TextBox
StextBox1.Location = New-Object Drawing.Point(20, 20)
$form.Controls.Add(StextBox1)

StextBox2 = New-Object Windows.Forms.TextBox
StextBox2.Location = New-Object Drawing.Point(20, 60)
$form.Controls.Add(StextBox2)

SbuttonAdd = New-Object Windows.Forms.Button
SbuttonAdd.Location = New-Object Drawing.Point(20, 100)
SbuttonAdd.Text = "Add"
SbuttonAdd.Add_Click({
Sresult = [int]StextBox1.Text + [int]StextBox2.Text
[System.Windows.Forms.MessageBox]::Show("Result: Sresult")

)

www.alexandrumarin.com 190

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.groupbox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.panel?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.messagebox?view=windowsdesktop-7.0
http://www.alexandrumarin.com

Sform.Controls.Add(SbuttonAdd)

SbuttonSubtract = New-Object Windows.Forms.Button
SbuttonSubtract.Location = New-Object Drawing.Point(100, 100)
SbuttonSubtract.Text = "Subtract”
SbuttonSubtract.Add_Click({
Sresult = [int]StextBox1.Text - [int]StextBox2. Text
[System.Windows.Forms.MessageBox]::Show("Result: Sresult")

)
Sform.Controls.Add(SbuttonSubtract)

Sform.ShowDialog()

a
File Edit View Tools Debug Add-ons Help

0@ 3 & B > 9 | = |8 |Boo|&m.

| Untitled5,ps1*(Recovered) Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8,ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Commands X
| Untitled13.ps1(Recovered) Untitled16.,p51"(Recovered) AppFinder.ps1 | Untitled21.ps1*(Recovered) Untitled27.ps1"(Recovered) get-azpolicies.psl Modules: | All v
| | Untitled33.ps1(Recovered) Untitled40.ps1*(Recovered) Untitled46.ps1*(Recovered) Untitled52 ps1*(Recovered) Untitled53.ps1*(Recovered) A ame:
| Untitled54,ps1*(Recovered) Untitleds{ &5 d) Untitled57.ps1*(Recovered) Untitled58.ps1*(Recovered)
| r A
i N itled, y pst™ X
| Untitled1.ps1*(Recovered) | Untitled| ed) copyfolderps1 Untitledd.ps1*(Recovered) Ado-AppProvsionesSharedPackageContainer
|" 17 SbuttonAdd.Text = "Add 1
1 18 she ttDMd Add_CTick(] e Add-AppsharedPackageCantainer
19 sult = [int]StextBoxl. Add-AppvClientConnectionGroup
;T . stem.Windows.Forms.Meg 2 Add-AppvClientPackage
22 Sform.Controls. Add(SbuttonAdd Add-AppvPublishingServer
23 Add Subtract) Add-AppxPack
24 ;I« ttonsubtract = New-Object Result: 3 ppirackage
25 ract.Location = Ne Age-AppxProvisioneaPackage
26 ract.Text = "Subtr] Add-Appxvolume
37 = Sbuttonsubtract. Add_Click({ oK i .
28 Sresult = [int]StextBoxl.Text - [int]S$textBox2.Text Add-AzADAppPermission
| 29 [System. windows.Forms.MessageBox] : :Show("ResuTt: Sresult™) Add-AzADGroupMember
I 30 R 2 ces
! 31 SForm.Controls.Add(SbuttonSubtract) Add-AzAnalysisServicesAccount
32 Aga-AzApiManagementApToGataway

33 Sform.ShowDialog() Add-AzApiManagementApToProduct

Add-AzApiManagementProductToGroup
P AL DURL = EW U T 1 IIUmS - Ot Add-AzApiManagementRegion
StextBoxl.Location — New-Object Drawing.Point(20, 20) Ada-AzapiManagementUserToGroup
L T e A G R Add-AzApplicationGatewayAuthenticationCertificate

StextBox2 = New-Object Wi quws.FnrmStTex,tﬁgx, N N Add-AzApplicationGatewayBackendAddressPool
i}i:,ﬁ"’é‘,; :;:t;gd(;t:z;g:gct Drawing. Point(20, 60) Add-AzApolicationGatewayBackendHttpSetting

Add-AzApplicationGatewsyBackendSetting
SbuttonAdd = New-Object Windows.Forms.Butto - . .
Add-AzApalicationGatewayCustomE
$buttonAdd. Locatic ew-Object Drawing. Pmnt(0, 100) pplication yCustomEmer
ShuttonAdd, Text — "A Add-AzApplicationGatewsyFrontendiPConfig

Add-AzApplicationGatewayFrontendPort
yHtipListener

L Text
ms.MessageBox] : :Show("Result: $result™)
yHtipListenerCustemError
Add-AzApplicationGatewsylPConfiguration
$buttonSubtract = New-Object Windows.Forms.Button Adad-AzApplicationGatewsyListener
SbuttonSubtract. Locat New-Object Drawing.Point(100, 100) Az
Sbuttonsubtract. T sul Add-AzhpolcationG
SbuttonSubtract. Ad k({ Add-AzApplicationG

Sresult = extBoxl.Text - [i nt] ;text Text
orms.MessageBox. ow("Result: $result™)

n
3
$Form.Controls. Add(SbuttonAdd)

yPrivateLinkConfiguration
yProbeConfig

Add-AzApplicationGatewsyRedirectConfiguration
Add-AzApplicationGatewsyRequestRoutingRule

D
$form.Controls. Add($buttonSubtract) yRewriteRuleSet

$Form. ShowDialog()

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. Ln33 Col 19

In the above example, we used various GUI elements and controls provided by Windows
Forms:

Form: Represents the main window of the application.
TextBox: Allows users to input text or numbers.
Button: Triggers specific actions when clicked, such as performing calculations in our
calculator.
e MessageBox: Displays messages or results to the user in a pop-up dialog.

Let's go through the code step by step and explain how it works:

www.alexandrumarin.com 191

100%

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.button?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.messagebox?view=windowsdesktop-7.0
http://www.alexandrumarin.com

e Add-Type -AssemblyName System.Windows.Forms: This line imports the necessary
assembly System.Windows.Forms, which contains classes for creating Windows
Forms applications.

e Sform = New-Object Windows.Forms.Form: This creates a new instance of the Form
class, which represents the main window of the application.

e Sform.Text = "Simple Calculator": Sets the text of the form's title bar to "Simple
Calculator".

e Sform.Size = New-Object Drawing.Size(300, 200): Sets the size of the form to a
width of 300 pixels and a height of 200 pixels.

e StextBox1 = New-Object Windows.Forms.TextBox: Creates a new instance of the
TextBox class, representing the first input box for numeric values.

e StextBox1.Location = New-Object Drawing.Point(20, 20): Sets the location of
textBox1 to an x coordinate of 20 and a y coordinate of 20 within the form.

e S$form.Controls.Add(StextBox1): Adds textBox1 to the form's collection of controls,
making it visible on the form.

e Similar steps are performed for StextBox2, the second input box, and both buttons
(SbuttonAdd and $SbuttonSubtract).

e For each button, an event handler is defined using the Add_Click() method. When the
user clicks the button, the event handler will execute the corresponding code inside
the block.

e SbuttonAdd.Add_Click({ ... }): The event handler for the "Add" button. It takes the
values from textBox1 and textBox2, converts them to integers using [int], performs
the addition operation, and displays the result in a message box using
[System.Windows.Forms.MessageBox]::Show().

e SbuttonSubtract.Add_Click({ ... }): The event handler for the "Subtract” button. Similar
to the "Add" button handler, it performs subtraction and displays the result in a
message box.

e Sform.ShowDialog(): This line shows the form as a dialog box, which means it will be
displayed in a modal way, and the user will need to interact with the form before
continuing with other tasks.

When you run the script, a small calculator window with two input boxes and two addition
and subtraction buttons will appear. After entering numeric values into the text boxes and
clicking the "Add" or "Subtract" button, a message box displaying the result of the
corresponding operation will appear.

www.alexandrumarin.com 192

http://www.alexandrumarin.com

Building Windows Forms Applications

Designing Windows Forms with PowerShell ISE

PowerShell ISE (Integrated Scripting Environment) is a PowerShell-specific integrated
development environment (IDE). It provides an interactive and user-friendly environment for
writing, testing, and debugging PowerShell scripts. PowerShell ISE is included with Windows
and is a useful tool for both new and experienced PowerShell users.

PowerShell ISE includes a powerful code editor with syntax highlighting to make reading and
writing PowerShell scripts easier. Syntax highlighting aids in the identification of script
elements such as variables, cmdlets, and comments by displaying them in different colors.
Tab completion is one of the most useful features of PowerShell ISE. When you begin typing
a cmdlet, variable, or parameter, pressing the Tab key will complete the command or display
a list of possible options, reducing typos and increasing productivity.

IntelliSense is built into PowerShell ISE and provides context-aware suggestions as you type.
This feature provides information about cmdlets, their parameters, and even user-defined
functions, allowing you to investigate your options and quickly access documentation.

Your scripts can be run and tested directly in the editor. Individual lines or selected code
blocks can be executed, making it simple to debug and troubleshoot your scripts.

You can also use the built-in debugging features to set breakpoints, step through code, and
inspect variables at runtime. This greatly simplifies the process of identifying and correcting
script errors.

Let's design a simple form that collects user information using PowerShell ISE:

Add-Type -AssemblyName System.Windows.Forms

Sform = New-Object Windows.Forms.Form
Sform.Text = "User Information Form"
Sform.Size = New-Object Drawing.Size(300, 200)

SlabelName = New-Object Windows.Forms.Label
SlabelName.Text = "Name:"

SlabelName.Location = New-Object Drawing.Point(20, 20)
Sform.Controls.Add(SlabelName)

StextBoxName = New-Object Windows.Forms.TextBox
StextBoxName.Location = New-Object Drawing.Point(100, 20)
Sform.Controls.Add(StextBoxName)

www.alexandrumarin.com 193

http://www.alexandrumarin.com

SbuttonSubmit = New-Object Windows.Forms.Button
SbuttonSubmit.Text = "Submit"
SbuttonSubmit.Location = New-Object Drawing.Point(100, 100)
SbuttonSubmit.Add_Click({

[System.Windows.Forms.MessageBox]::Show("Hello, $(StextBoxName.Text)!
Information submitted.")

})
Sform.Controls.Add(SbuttonSubmit)

Sform.ShowDialog()

File Edit View Tools Debug Add-ons Help
N & B & o = |8 Bool®@E.
| Untitleds.ps1*(Recovered) Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Commands X x
| Untitied13.ps1+{Recovered) Untitled16.ps1*(Recovered) AppFinderpst | Untitled2 psT*(Recovered) Untitled27.ps1*(Recovered) get-azpolicies,ps] Moduies: | All v | [rerre
| Untitled33.ps1*(Recovered) Untitledd0.ps1*{Recovered) Untitled46.ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled53.ps1*(Recovered) <] —
| untitieds4.ps1*(Recovered) Untitled55.ps1*(Recovered) Untitled56.ps1*(Recoverad) Untitled57.ps1*(Recovered) Untitled58.ps1*(Recovered)
A

| Untitied1.p51*(Recovered) | Untitled2.ps17(Recovered) Untitled3.ps17(Recavered) copyfolder.ps1 Untitledé.ps1*(Recovered) Aco-ApProvsionesshareaPackagEContainer

8 SlabelName.Text = "Name:" , .

@ $labelName.Llocation = New-Object Drawing.Point(20, 20) Add-AppSharedPackageContainer

10 SForm.Controls.Add(S1abelNamz) Add-AppvClientConnectionGroup

11 et

12 StextBoxName = New-Object Windows.Forms. TextBox Adc-AppvClientPackage

13 StextBoxName.location = New-Object Drawing.Point(100, 20) Add-AppvPUblishingServer

12 Sform.Controls.Add(StextBoxName) Add-AppxPackage

15

16 ShuttonSubmit = New-Object Windows.Forms.Button Agd-AppxProvisionedrackage

17 SbuttonSubmit.Text = "Submit” Add-ApexVolume

1s SbuttonSubmit.Location = New-Object Drawing.Point(100, 100) N .

19 [Sbuttonsubmit.Add C1ick({ Add-AzADAppPermission

20 [System.windows. Forms.MessageBox] : :Show("Hello, $(StextBoxName.Text)! Information submitted.”) Add-AZADGroupMember

21 | h _ eServices,

32 "SForm.Controls.Add(SbuttonSubmit) Ada-AzAnalysisServicesAccount

23 Add-AzApiManagementApiToGateway

2 $form. ShowDialoa() = Add-AzApiManagementhpiToProguct

= ort

Hellg, alex! Information submitted. Ada-AzApiManagementProductioGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplicationGatewayAuthenticationCertificate
Add-AzApplication

t Windows. Forms. Fd N ot
r Informatio Add-AzApplicationGatewayBackencHtipSetting

New-Object Drawing.5id Ada-AzApplicationGatewayBackencsetting

- - Add-AzApplicationGatewayCustomError
$labelName = New-Object Windows.For pelicetonbatenaytusiomener
$1abelName. Text e Add-AzApplicationGatewayFrontend|PConfig

$1abelName. Location = New-Object Drims _— Add-AzApplicationGatewayFrontendPort
$form.Controls.Add($1abelName)
Ada-AzApplicstionGatewayHitpListener

tem32> Add-Type -4

wayBackendAddressPoa|

$textBoxName = New-Object Windows.Forms. TextBox Add-AzApplicationGatewayHttpListenerCustomError
textBoxName. Location = New-Object Drawing.Point(100, 20) y X
:fm"_ pim v rn“tﬁmumil 9 ¢) Add-AzApplicationGatewaylPConfigurtion
B Ada-AzApplicationGatewayListener
e Ada-AzApplicationGatewayPrivateLinkConfiguration
$buttonSubmit. New-Object Drawing.Point(100, 100) Add-AzApplicationGatewayProbeConfig
$buttonSubmit.Add_Clicl dd-AzApplicationG: irectConfiguration

[System. Windows. Forms .MessageBox] : :Show("Hello, $§($textBoxName.Text)! Information submitted.™

Add-AzApplicationGatewsyRequestRoutingRule

D
$form.Controls.Add($buttonsubmit) Add-AzApplicationGatews:

$Form. ShowDialog()

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. Ln62 Col 1 100%

The above code creates a simple Windows Forms application to collect user information
through a graphical user interface (GUI). The GUI consists of a form with a label, a text box,
and a submit button.

The code starts by adding the System.Windows.Forms assembly to the PowerShell session,
allowing the script to create Windows Forms and access GUI-related classes and controls.

Following that, a new instance of the Form class is created to represent the application's
main window. The title of the form is "User Information Form," and its dimensions are 300
pixels wide by 200 pixels tall.

The Label class is used to create a label control that displays the text "Name:". The label is
placed within the form at coordinates (20, 20), which is 20 pixels from the left edge and 20

www.alexandrumarin.com 194

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms?view=windowsdesktop-7.0
http://www.alexandrumarin.com

pixels from the top edge. The label control is added to the form's Controls collection, making
it a part of the form.

The TextBox class is used to create a text box control that allows the user to enter text. The
text box is placed within the form at coordinates (100, 20), which is 100 pixels from the left
edge and 20 pixels from the top edge. The form now has a text box control.

The Button class is used to create a button control that represents a clickable button. The
button's text is set to "Submit," and it is positioned within the form at coordinates (100, 100),
which is 100 pixels from the left edge and 100 pixels from the top edge.

Using the Add Click method, an event handler is added to the button's Click event. When the
button is pressed, the event handler code contained within the script block is executed.

The MessageBox::Show() method is used within the event handler to display a message box.
The message box displays a greeting message in addition to the text entered into the text
box. The form now has a button control.

Finally, the form's ShowDialog() method is invoked to display it as a modal dialog. The term
"modal" refers to the fact that the user must interact with the form before proceeding with
other tasks. The script will pause at this line until the user closes the form.

When the user enters their name in the text box and clicks the submit button, a message box
with a greeting message that includes the user's name appears.

Creating Forms and Dialog Boxes

To create a Windows Form, you can use the New-Object cmdlet to instantiate the
System.Windows.Forms class. Forms provide the basis for your application's user interface
and contain controls like buttons, labels, text boxes, etc.

Let's create a simple form with a label, text box, and button:

Add-Type -AssemblyName System.Windows.Forms

Sform = New-Object Windows.Forms.Form
Sform.Text = "My Form"
Sform.Size = New-Object Drawing.Size(300, 200)

Slabel = New-Object Windows.Forms.Label
Slabel.Text = "Enter your name:"

Slabel.Location = New-Object Drawing.Point(20, 20)
Sform.Controls.Add(Slabel)

StextBox = New-Object Windows.Forms.TextBox
StextBox.Location = New-Object Drawing.Point(20, 50)

www.alexandrumarin.com 195

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.messagebox.show?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-object?view=powershell-7.3
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms?view=windowsdesktop-7.0
http://www.alexandrumarin.com

Sform.Controls.Add(StextBox)

Sbutton = New-Object Windows.Forms.Button
Sbutton.Text = "Submit"

Sbutton.Location = New-Object Drawing.Point(20, 100)
Sform.Controls.Add(Sbutton)

Sform.ShowDialog()

The script begins by loading the System.Windows.Forms assembly, necessary for working
with Windows Forms and GUI elements. A new form object is created using the New-Object
cmdlet and the Windows.Forms.Form class, which will serve as the main window of the
application.

The Text property is used to set the form's title to "My Form," and the Size property is used to
set its size to 300 pixels in width and 200 pixels in height. A label object is created using the
Windows.Forms class to display a label on the form. The Text property of the Label class is
set to "Enter your name.”

Using the Location property, the label is placed on the form at coordinates (20, 20), which
places it 20 pixels from the form's left edge and 20 pixels from its top edge. The label control
is added to the form's Controls collection, becoming a form component. The
Windows.Forms class is used to create a text box object. The TextBox class allows the user
to enter text. Using the Location property, the text box is placed on the form at coordinates
(20, 50), 20 pixels from the left edge and 50 pixels from the top edge. The text box control is
added to the form's Controls collection, becoming a form component.

Following that, a button object is created with Windows.Forms.Button class. The Text
property of the button is set to "Submit." Using the Location property, the button is placed on
the form at coordinates (20, 100), 20 pixels from the left edge and 100 pixels from the top
edge.

The button control is added to the form's Controls collection, thereby becoming a component
of the form. Finally, the form's ShowDialog() method is invoked to display it as a modal
dialog. This implies that the user must interact with the form before moving on to other
tasks. The script will pause at this line until the user closes the form.

Dialog boxes are special forms that allow users to interact with them in order to obtain
specific information or make decisions. PowerShell includes dialog boxes for displaying
messages and file selection, such as MessageBox and OpenFileDialog.

www.alexandrumarin.com 196

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.button?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messagebox
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.openfiledialog?view=windowsdesktop-7.0
http://www.alexandrumarin.com

Adding Controls and Handling Events

Windows Forms are composed of controls that allow users to interact with the application.
You can add various controls like buttons, checkboxes, textboxes, etc., to the form using the

Add method.

Let's add a button to the form and handle its click event:

Add-Type -AssemblyName System.Windows.Forms

Sform = New-Object Windows.Forms.Form
Sform.Text = "My Form"
Sform.Size = New-Object Drawing.Size(300, 200)

Sbutton = New-Object Windows.Forms.Button
Sbutton.Text = "Click Me!"

Sbutton.Location = New-Object Drawing.Point(20, 20)
Sform.Controls.Add(Sbutton)

$button.Add_Click({
[System.Windows.Forms.MessageBox]::Show("Button clicked!")

)

Sform.ShowDialog()

www.alexandrumarin.com

197

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.button?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.checkbox?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox?view=windowsdesktop-7.0
http://www.alexandrumarin.com

a

File Edit View Tools Debug Add-ons Help

I = R HPN B« 8 FBoo|&o.
| Untitled5.ps1*(Recovered) Untitledé.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstal Key.ps1 Commands X
| Untitled13.ps1"(Recovered) Untitled16.ps1*(Recovered) AppFinder.ps1 | Untitled21.ps1*(Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps1 Modules: | All v
‘UntltIEdBps1‘(REmvErEd] Untitled40.ps1*(Recovered) Untitled46.ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled53.ps1*(Recovered) ~ Namer
\ Untitled54.ps1*(Recovered) Untitled55.ps1*(Recovered) Untitled56.ps1*{Recovered) Untitled57.ps1 {Recovered) Untitled58.psT1*(Recovered)
A

| Untitled1.ps1*(Recovered)

|| Untitledzps1*Recovered) Untitled3.ps1*(Recovered) copyfolderps] Untitled4 ps1*(Recovered) x

Add-AppProvisionedSharedPackageContainer
Adg-AppSharedPackageContainer

$form = New-Object Windows.Forms.Form posnarecrackad

$form. Text = "Ny Form” Adg-AppvClientConnectionGraup

$form.Size = New-Object Drawing.5ize(300, 200) Button clicked! Add-AppvClientPackage

$button = New-Object Windows.Forms.Button Add-AppvPublishingServer
on.Text = "Click Me!” Add-AppxPackage
on.Location = New-Object Drawing.Point(20, 20) oK p)
10 Sform.Controls.Add(Sbutton) Add-AppxProvisionedPackage
b Add-AppxVolume

FE RNV

12 Sbutton. Add CTick({ . . Add-AzADAppPermission
13 [System. Windows. Forms.MessageBox] : : Show("Button clicked!™)
14 | D Add-AzADGroupMember
A n , Add-AzAnalysisServicesAccount
6 sform.
| i% $form. showpialea() o Add-AzApiManagementApiToGateway
o

. Add-AzApilManagementApiToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplictionGatewayAuthenticationCertificate
Add-AzApplicationGatewayBackendAddressPool
Add-AzApplicationGatewayBackendHtpSetting

ect Windows.Forms. Button

$form.Controls. Add($button)

$form. showDialog()

Add-AzApplicationGa
emblyName System.Windows.Forms Add-AzApplicationGa

vayFrontendiPCanfig
vayFrontendport
atewayHitpListener
HttplistenerCustomErmor
PConfiguratien

Uistener

$form = New-Object Windows.Forms.Form

$form. Text m"

$form. Size = New-Object Drawing.Size(300, 200)
. Forms. Button Add-AzApplication

ayPrivateLinkConfiguration

Sbutton.Locatior ew-Object Drawing.Point(20, 20)

$form. Controls. Add($button) Add-AzApplicationGatewayProbeConfig
. Add-AzApplicationGatewayRedirectConfiguration
$button.Add Click({ dd. licati i
System. Windows. Forms.MessageBox] = : Show("Button c1icked!™) zApplicationGats outingRule
» Add-AzApplicationGa

RewriteRuleSet

$Form. Showbialog()

Running seript / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. Ln 105 Col1

Looking at the code above, the System.Windows.Forms assembly is loaded using the
Add-Type cmdlet. This assembly contains classes and methods for working with Windows
Forms and GUI elements.

We then create a new form using New-Object Windows.Forms.Form, set its title to "My
Form," and define its size to be 300x200 pixels.

Next, we create a button control using New-Object Windows.Forms.Button, set its text to
"Click Me!", and position it at coordinates (20, 20) within the form using New-Object
Drawing.Point(20, 20). The button is added to the form using Sform.Controls.Add(Sbutton).

We add a click event handler to the button using Sbutton.Add_Click({ ... }), and within the
handler, we display a message box using
[System.Windows.Forms.MessageBox]::Show("Button clicked!").

At the end, we display the form using $Sform.ShowDialog(), allowing users to interact with the
button and trigger the click event.

www.alexandrumarin.com 198

100%

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-7.3
http://www.alexandrumarin.com

Styling and Customizing Windows Forms

You can customize the appearance of your forms and controls by modifying their properties

like BackColor, ForeColor, Font, Size, etc. This allows you to create visually appealing and

user-friendly interfaces.

Let's customize the form and button:

Add-Type -AssemblyName System.Windows.Forms

Sform = New-Object Windows.Forms.Form
Sform.Text = "My Form"

Sform.Size = New-Object Drawing.Size(300, 200)
Sform.BackColor = [System.Drawing.Color]::LightBlue

Sbutton = New-Object Windows.Forms.Button
Sbutton.Text = "Click Me!"

Sbutton.Location = New-Object Drawing.Point(20, 20)
Sbutton.BackColor = [System.Drawing.Color]::DarkBlue
Sbutton.ForeColor = [System.Drawing.Color]::White
Sform.Controls.Add(Sbutton)

$button.Add_Click({
[System.Windows.Forms.MessageBox]::Show("Button clicked!")

)

Sform.ShowDialog()

www.alexandrumarin.com

199

http://www.alexandrumarin.com

>
File Edit View Tools Debug Add-ons Help
(=3 > I o H = &

Untitled6.ps1*(Recovered)

Boolsd.

Untitled8.ps1*{Recovered)

| Untitleds.ps1*(Recovered) Untitled7.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1

| Untitled13.ps1°Recovered) Untitled16.,ps1*(Recovered) AppFinderps] | Untitied21.ps1"(Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps]

[Untitled33.ps1* (Recovered) Uniitled40,ps1*(Recovered) Untitledd.ps1*(Recovered) Uniitled52.ps1*(Recovered) Uniitled53.ps1*(Recovered)
[Untitieds4.ps1* (Recovereq) Untitled55.ps1*(Recoversd) Untitled56.ps1*(Recavered) UntitledS7.ps1* (Recoverad) Untitled38.ps1*(Recoversd)
| Untitied1.ps17(Recovered) | Untitied2.psT"(Recoverad) Untitled.ps1"(Recovered) copyfolder.s] Untitiedd.ps1*(Recoverad)

3 Sform = New-Object Windows.Forms.Form

P ext y Form”

5 Sform.Size = New-Object Drawing.Size(300, 200)

5 Sform.BackColor — [System.Drawing.Colar]::Lightslue

8 Sbutton = New-Object W ws. Forms. Button

9 Sbutton.Text = "Click Mel”

10 tton.Location = New-Object Drawing.Point(20, 20)

11 tton. BackColor tem. Drawing.Color]: :DarkBlue

12 Sbutton.ForeColor = [System.Drawing.Color]: White

13 Sform.Controls.Add(Sbutton)

14

15 Esbutton. Add_CTick({

16 [System. Windows. Forms.MessageBox] : : Show("Button clicked!”>

17 [B L)

18

19 Sform.ShowDialeg()

e e e
[System. Windows. Forms. MessageBox] : : Show(“Button clicked!™)

n

4 Button clicked!

Sform. ShowDialeg ()

ystem32> Add-Type -AssemblyName System.Windows.Forms!

$form = New-Object Windows. Forms.Form
$Form. Text y Form"
$form. Size Object Drawing.Size(300, 200)

Nex
$form.BackColor = [System.Drawing.Color]::

Sbutton = New-Object Win -orms. Button
$button.Text = "Click Me
$button. Locatior
Sbutton. BackColo g
$button.ForeColor = [System.Drawing.Color]:zWhite
$form. Controls. Add($button)

Sbutton. Add_CTick({

[System. Windows.Forms.MessageBox] - : Show("Button clicked!™)

3

$Form. ShowDialog ()

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger.

~

Commands X

Modules: | All

Name:

A
Adg-AppPravisicnedsharedPackageContainer
Add-AppSharedPackageContainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage

Add-AppvRUBIishingServer

Add-AppxPackage

Adg-AppxProvisionedPackage

Add-AppVolume

Add-AzADAgpPermission

Add-AzADGroupMember
Add-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Adc-AzApiManagementApToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserTaGroup
yAuthenticationCertificate

Add-AzApplicationGatewsyBackendAddressPool

jHittplListener
sHttpListenerCustomError

yIPConfiguraticn
Adg-AzApplicationGatewsyListensr
Add-AzApplicationG
Add-AzApplicationG
Add-AzApplicationG
Add-AzApplicationGatewsyRequestRoutingRule

yPrivateLinkConfiguration

yProbeConfig
yRedireciConfiguration

beRuleSet

Ln 127 Col 1

To customize the background color of the form, we use Sform.BackColor =

[System.Drawing.Color]::LightBlue.

Next, we create a button control using New-Object Windows.Forms.Button, and set its text to

"Click Me!".

We position the button at coordinates (20, 20) within the form using Sbutton.Location =

New-Object Drawing.Point(20, 20).

To customize the appearance of the button, we set its background color to dark blue using

Sbutton.BackColor = [System.Drawing.Color]::DarkBlue, and its foreground color (text color)

to white with Sbutton.ForeColor = [System.Drawing.Color]::White.

www.alexandrumarin.com

200

100%

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.form.backcolor?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.color?view=net-7.0
https://learn.microsoft.com/en-us/office/vba/api/access.commandbutton.forecolor
http://www.alexandrumarin.com

Working with Layouts and Containers

Layouts and containers help organize controls on the form and manage their positions and
sizes. They ensure a responsive and consistent layout as the form is resized.

Using TableLayoutPanel for arranging controls in rows and columns:

Add-Type -AssemblyName System.Windows.Forms

Sform = New-Object Windows.Forms.Form
Sform.Text = "My Form"
Sform.Size = New-Object Drawing.Size(300, 200)

StableLayoutPanel = New-Object Windows.Forms.TableLayoutPanel
StableLayoutPanel.Dock = [System.Windows.Forms.DockStyle]::Fill
Sform.Controls.Add(StableLayoutPanel)

SlabelName = New-Object Windows.Forms.Label
SlabelName.Text = "Name:"
StableLayoutPanel.Controls.Add(SlabelName, 0, 0)

StextBoxName = New-Object Windows.Forms.TextBox
StableLayoutPanel.Controls.Add(StextBoxName, 1, 0)

SbuttonSubmit = New-Object Windows.Forms.Button
SbuttonSubmit.Text = "Submit"
StableLayoutPanel.Controls.Add(SbuttonSubmit, 0, 1)
StableLayoutPanel.SetColumnSpan(SbuttonSubmit, 2)

SbuttonSubmit.Add_Click({
[System.Windows.Forms.MessageBox]::Show("Hello, $(StextBoxName.Text)!
Information submitted.")

)

Sform.ShowDialog()

www.alexandrumarin.com 201

http://www.alexandrumarin.com

>}

File Edit View Tools Debug Add-ons Help

O e /| & B > 9 B *® & 3500 0h3@-.
| Untitleds.ps1*(Recovered) Untitled6,ps1*{Recovered) Untitled?.ps1*(Recovered) Untitled8.ps1*{Recovered) SearchApplicationGetUninstallKey.ps1 Commands X x
| Untitied13.ps1(Recovered) Untitled 16.psT*(Recovered) AppFinderpsi | Untitled21.ps1*(Recovered) Untitled27.psT*(Recovered) get-azpolicies.ps1 Moduies: | All
| Untitied33.ps1*(Recovered) Untitlec40,ps1*(Recoverd) Untitied46.ps1*(Recovered) Untitled52.ps1*(Recoverad) Untitled53.ps1*(Recoverd) Ol e
| Untitled34.ps1*(Recovered) Untitled55.ps1%(Recovered) Untitled36.ps1(Recovered) Untitled57.ps1*(Recoverad) Untitled58.ps1*(Recovered)
A
= . = ; sl X

| Untitled1.ps1-(Recovered) | Unittea2psT (Recoverec) Untitled3 ps1*(Recovered) copyfolder.ps1 Untitledd.ps1*(Recovered) de-ApoProviionedsharedPackaneCantaingr

11 $labelName = New-Object Windows.Forms.Label

13 SiabelName.Text = “Name: Add-AppSharedPackageContainer

13 StableLayoutPanel.Controls.Add($1abelName, 0, 0) Add-AppvClientConnectionGroup

14 .

15 StextBoxName = New-Object Windows.Forms.TextBox Add-AppuClientPackage

16 StableLayoutPanel.Controls.Add(StextBoxName, 1, 0) Adc-AppvPublishingServer

L Add-AppxPackage
18 SbuttonSubmit = New-Object Windows.Forms.Button poiPackag
19 SbuttonSubmit.Text = "Submit” Add-AppxProvisionedPackage

20 StableLayoutPanel.Controls. Add(SbuttonSubmit, 0, 1) Adc-Appxvolume

2 StablelayoutPanel. SetColumnSpan($buttonSubmit, 2) AdG-AzADABpPemission

23 ESbuttonSubmit.Add Click({ R . . . Add-AZADGrouphember

s«; » [System.wWindows.Forms.MessageBox] : : Show(H:‘jﬂ S/dtavrRavhama Tawt)l Tnfarmatinan submitted.”™) AddAzAnalysisSenvicesAccount

26 . Ac-AzApiManagementApToGatEwaY
g; Sform. ShowDialeg() Name: alex Add-AzApiManagementApToProduct

Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplicationGatewsyAuthenticationCertificate

Submit

$form. Size Adg-AzApplicationGatewsyBackendAddressPool
$tableLayoutr: Add-AzApplicationGatewayBackendHittpSetting
$tablelayoutP

$form.Controls

SlabelName = New-Object Windows.Forms.Label
$1abelName. Text = “Name:"
StableLayoutPanel.Controls. Add($1abelName, 0, 0)

Add-AzApplicationGatewsyHttpListenerCustomeror
PConfiguration
$buttonSubmit ject Windows.Forms. Button Adc-Azhpplication stener
$buttonSubmit. it”

Stablel ayoutP: ols. Add($buttonSubmit, 0, 1)
StablelayoutPane TumnSpan (SbuttonSubmit, 2) Adc-AzApplication

rivateLinkConfiguration
TobeConfig

SbuttonSubmit. Add_C1ick({

[System.Windows . Forms.MessageBox] : : Show("Hello, $($textBoxName.Text)! Information submitted.™) Ada-AzApplication!

Ada-AzApplica

$form. ShowDialog()

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. Ln 18 Col48 100% |

In this example, TableLayoutPanel is used to create a form with two rows and two columns,
organizing the controls neatly.

As usual, let us break down the code again. A table layout panel object is then created using
the Windows.Forms.TableLayoutPanel class. This control is used to organize the other
controls (label, text box, and button) in a structured layout. The Dock property is set to Fill,
which means the table layout panel will fill the entire form.

The label control for the name is created using the Windows.Forms.Label class. The text of
the label is set to "Name:" using the Text property. The label control is added to the table
layout panel using the Controls.Add() method, and its position in the table is set to row 0 and
column 0.

The text box control for entering the name is created using the Windows.Forms.TextBox
class. The text box control is added to the table layout panel using the Controls.Add()
method, and its position in the table is set to row 1 and column 0.

An event handler is added to the button using the Add_Click() method. Inside the event
handler, a message box is displayed with the greeting "Hello, [Name]! Information submitted."
The text entered by the user in the text box is accessed using the StextBoxName.Text
property.

Finally, the ShowDialog() method is called on the form, which displays the form as a modal
dialog. This means the user must interact with the form before continuing with other tasks.
The script will pause at this line until the form is closed by the user.

www.alexandrumarin.com 202

http://www.alexandrumarin.com

Developing WPF Applications

Introduction to WPF (Windows Presentation Foundation)

Microsoft's Windows Presentation Foundation (WPF) is a powerful framework for developing
desktop applications with rich user interfaces. It provides a flexible and declarative approach
to creating graphical interfaces, making complex GUI elements easier to design and
manage. We've already covered WPF basics in a previous chapter, so let's get into how you
can use it to build user interfaces.

Creating XAML-Based WPF User Interfaces

To create WPF applications in PowerShell, we use XAML to define the visual elements and
layout of the user interface. PowerShell provides the Windows.Markup.XamlReader class,
which allows us to load XAML files and convert them into WPF objects.

Let's look at a simple example of creating a XAML-based WPF window:

Add-Type -AssemblyName PresentationFramework

[xml]Sxaml = @"
<Window
xmlIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmins:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="My WPF App" Height="300" Width="400">
<Grid>
<TextBlock Text="Hello, PowerShell WPF!" HorizontalAlignment="Center"
VerticalAlignment="Center"/>
</Grid>
</Window>

‘@

SNodeReader = (New-Object System.Xml.XmINodeReader Sxaml)
SWindow = [Windows.Markup.XamlIReader]::Load(SNodeReader)

Swindow.ShowDialog()

www.alexandrumarin.com 203

https://learn.microsoft.com/en-us/dotnet/api/system.windows.markup.xamlreader?view=windowsdesktop-7.0
http://www.alexandrumarin.com

>
File Edit View Tools Debug Add-ons Help

U & - & 0 » |« 8 BFoo|@@.

| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered)

| Untitled16.ps1* Recovered) AppFindar.psi Untitled21.ps1*(Recavered) | Untitled27.ps1*(Recovered) get-azpolicies,ps] Untitled33.ps1*(Recovered)

| Untitled40.ps1*(Recoverad) Untitled46.ps1%(Recoverad) Untitled52.ps1(Recovered) Untitled53.ps1*(Recoverad) Untitled54.ps1*(Recovered)

| Untitledss.ps1*Recovered) Untitled56.ps1*{Recovered) Untitled57.ps1*(Recovered) Untitled58.psT*(Recovered) Untitled59.ps1*

| Untitled1.ps1*{Recovered)
4 | <Window

Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps Untitled4.ps1*(Recovered) X | Untitled5.ps1*{Recovered)

5 xmlns="http://schemas.microsoft. com/winfx/2006/xam] /presentation”

6 xmins :x="http://schemas. microsoft, com/winfx/2006/xaml”

7 Tit WPF App” Height="300" Width="400">

8 <Grid>

9 <TextBlock Text="Hello, PowerShell WPFI" HorizontalAlignment="Center” VerticalAlignment="Center”/»
10 </Grid>

11| </Window>

12 |"e

13

14 SNodeReader = (New-Object System.Xml.XmINodeReader $xaml) >]
15 SWindow = [Windows.Markup.Xam]Reader] : :Load($NodeReader)

16

17 Swindow.Showbialog()

18

19

20

21

Hello, PowerShell WPF!

PS C:\WINDOWS\system32> Add-Type -AssemblyName PresentationFramework
[xm1]$xaml = @"
of t. com/winf

osoft. com/ui
00" Width="4

/xam] /presentation”
xam1™

Powershell WPF!" HorizontalAlignment="Center"” VerticalAlignment="Center" />

$NodeReader = (New-Object System.Xml.XmlNodeReader $xaml)
$Window — [Windows.Markup. XamIReader] : :Load($NodeReader)

Swindow. ShowDialog()

Running script / selection. Press Ctrl+Break to stop. Press Ctri+B to break inta debugger.

Commands X
Modules: | All
Name:

A
Add-AppProvisicnedSharedPackageContainer
Add-AppSnaredPackageCantainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer

Add-AppxPackage
Adg-AppxProvisionedPackage
Ada-AppxVolume

Add-AzADAppPermission
Add-AzADGrouphMember
Add-AzAnalysisServicesAccount
Ada-AzApiManagementApToGateway
Add-AzApiManagementApiToProduct
Add-AzApiManagementProduciToGroup
Add-AzApiManagementRegion
Ada-AzpiManagementUserToGroup
Add-AzApplicationGatewayAutnenticationCertificate
Add-AzApplicationGatewayBackendAddressPool
Add-AzApplicationGatewayBackendHttpSetting

rontendIPConfig
rontendPort

waytttpListenerCustomEror
PConfiguration

stener
rivateLinkConfiguration
TobeConfig
Add-AzApplicationGatewsyRedirectConfiguration
Add-AzApplicationGatey
Add-AzApplication

equestRoutingRule
ewriteRuleSet

Ln 502 Col 1

In this example, we define a simple window with a TextBlock control that displays the text
"Hello, PowerShell WPF!" in the center. We use the Windows.Markup.XamlIReader class to

convert the XAML content into a WPF window object and then display it using the

ShowDialog() method.

But let’s parse the full code to better understand it. First, we add the PresentationFramework

assembly using the Add-Type cmdlet, which is required for working with WPF.

Next, we define the XAML layout as a string and store it in the Sxaml variable. The XAML
describes a window with a TextBlock control displaying the text "Hello, PowerShell WPF!"

centered both horizontally and vertically within a Grid container.

We then convert the XAML string to an XML object using [xml]$xaml, which allows us to use

an XML reader to process it. Next, we create a new XmINodeReader object called
SNodeReader from the XML object Sxaml. This step is necessary because the

XamlReader.Load method expects an XML reader as its input.

Now, we use Windows.Markup.XamlIReader.Load(SNodeReader) to load the XAML content

and create a WPF window object called SWindow.

Finally, we call Swindow.ShowDialog() to display the window as a modal dialog, which means

it will block interaction with other windows until it is closed.

www.alexandrumarin.com

204

100%

https://learn.microsoft.com/en-us/dotnet/api/system.windows.markup.xamlreader?view=windowsdesktop-7.0
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-7.3
https://learn.microsoft.com/en-us/dotnet/api/system.windows.markup.xamlreader.load?view=windowsdesktop-7.0
http://www.alexandrumarin.com

Binding Data to WPF Controls

Data binding is a powerful feature of WPF that allows us to connect data from a data source
to WPF controls. Data binding can be used by PowerShell to keep the user interface up to
date with changes in the underlying data.

Let's see an example of data binding in a WPF application:

Add-Type -AssemblyName PresentationFramework

Define a simple object with properties
class Person {

[string] SName

[int] SAge
}

Create a new instance of the Person class
Sperson = [Person]::new()

Sperson.Name = "John Doe"

Sperson.Age = 30

Load XAML with data binding
[xml]S$xaml = @"
<Window
xmins="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Data Binding Example" Height="150" Width="300">
<Grid>
<TextBlock Text="{Binding Name}" HorizontalAlignment="Center"
VerticalAlignment="Center"/>
<TextBlock Text="{Binding Age}" HorizontalAlignment="Center"
VerticalAlignment="Bottom"/>
</Grid>
</Window>

II@

SNodeReader = (New-Object System.Xml.XmINodeReader Sxaml)
SWindow = [Windows.Markup.XamlIReader]::Load(SNodeReader)
Set the data context for data binding

Swindow.DataContext = Sperson

Show the window

www.alexandrumarin.com 205

http://www.alexandrumarin.com

Swindow.ShowDialog()

File Edit View Tools Debug Add-ons Help
= = a = 8 500 #®|.
| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitied13.ps1~(Recovered) Commands X
| Untitled16,ps1+{Recovered) AppFinder.psl Untitled21.ps1*{Recovered) | Untitled2 ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) Modues: | All
| Untitled40.ps1*(Recovered) Untitledd6.ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled53.ps1*(Recovered) Untitled54.ps1*(Recovered) <] —
| Untitledss.ps1*(Recovered) Untitled36.ps1*(Recovered) Untitled57.ps1*(Recovered) Untitled58.ps1*(Recovered) Untitled59.ps1*
A
itled2.pel e) A x el
| untitled, :sw (Re:overed){ Untitled2.ps1*(Recovered) Untitled3.ps1*{Recovered) copyfolder.ps1 Untitledd.ps1*(Recovered) Untitled5.ps1*(Recovered) e AppProvsionedSharedPackageCortainer
4 Eclass Person)
: Lstring] SName Add-AppSharedFackageContainer
5 [int] SAge Adg-AppvClientConnectionGroup
7 Add-AppvClientPackage
: ¥
9 # Create a new instance of the Person class Add-AppvPUblishingServer
10 Sperson = [Person]::new() Add-AppxPackage
11 $person.Name = "John Doe"
12 Sperson.Age = 30 Ada-AppxProvisionedPackage
b d h data bindi Add-AppxVolume
Load XAWL with dat
b o g oata binding Add-AzADABpPermission
16 Add-AZADGroupMember
17 s szhewa .microsoft.com/winfx/2006 N N ices,
18 mins sx="http: //schemas. microsaft. com/winfx/20| Add-AzAnalysisServicesAccount
19 Ti ata Binding Example- Heightor130" WAdt| Add-AzApilManagementhpiToGateway
20 <Grid> AzApiM N
21 <TextBlock Text="{Binding Name}" Horizonta lenter"/> Aag-AzApIEnzgementApTofraduc
John Doe Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
" Add-AzApilManagementUserToGroup
Sherson. Age Add-AzApplicationGatewayAutnenticationCertiicate
Add-AzApplicationGatewayBackendAddressPoal
Load XAML with data binding Add-AzApplicationGatewayBackendHitpSetting
DxolISxand — @
Adg-AzApplicationGatewayBackendsetting
s e stal. Add-AzApplicationGatewayCustomError
= e] Add-AzApolication Frontend|PConfia
Add-AzApplication FrontendPort
tBlock Text= orizontalAlignment="Center" VerticalAlignment="Center"/> N
i l\ae] HorizontalAlignment="Center" VerticalAlignment="Bottom"/> Adc-AzApplication HitpListener
Add-AzApplication HitpListenerCustomError
Adg-AzApplication IPConfiguration
Add-AzApplicationGatewayListener
SNodeReader = (New-Object System.Xml.XmlNodeReader Sxaml) Az onGatensyPrive ;
Swindow = [Windows.Markup.Xam1Reader] : :Load($NodeReader) Add-AzApplicationGatewayPrivateLinkCanfiguration
Add-AzApplicationGatewayPrabeConfig
e dd-AzApplicationG: irectConfiguration
Set the data context for data binding
Swindow. DataContext = Sperson Add-AzApplication RequestRoutingRule
i Add-AzApolication RewriteRuleSet
Show the window A
Swindow. ShowDialog ()
Ln €30 Col 1 100%

Running script / selection. Press Cirl+Break to stop. Press Ctrl+B to break into debugger.

In this example, we create a simple Person class with Name and Age properties. We then
define a XAML window with two TextBlock controls that use data binding to display the
Name and Age properties of the Sperson object. We set the data context of the window to
Sperson, which allows the controls to bind to its properties.

As usual, let us have a look over the whole code. First, we add the PresentationFramework
assembly using the Add-Type cmdlet, which is required for working with WPF.

Next, we define a simple class called Person with two properties: SName of type [string] and
SAge of type [int].

Then, we create a new instance of the Person class called Sperson. We set the SName
property to "John Doe" and the SAge property to 30.

Next, we define the XAML layout as a string and store it in the Sxaml variable. The XAML
describes a window with two TextBlock controls. The Text property of each TextBlock is
bound to the properties of the Person object using data binding.

We then convert the XAML string to an XML object using [xml]$xaml, which allows us to use
an XML reader to process it.

www.alexandrumarin.com 206

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-7.3
http://www.alexandrumarin.com

Next, we create a new XmINodeReader object called SNodeReader from the XML object
Sxaml. As mentioned, this is necessary because the XamlReader.Load method expects an
XML reader as its input.

We set the data context of the window to the Sperson object using Swindow.DataContext =
Sperson. This step allows data binding to access the properties of the Person object and

display them in the TextBlock controls.

Finally, we call Swindow.ShowDialog() to display the window as a modal dialog, which means
it will block interaction with other windows until it is closed.

Styling and Theming WPF Applications

WPF provides extensive styling and theming capabilities that allow us to customize the
appearance of our applications. We can define styles, templates, and resources in XAML to
create visually appealing and consistent user interfaces.

Here's an example of styling a WPF button:

Add-Type -AssemblyName PresentationFramework

Load XAML with a styled button
[xml]Sxaml = @"
<Window
xmins="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Styled Button" Height="150" Width="300">
<Grid>
<Button Content="Click Me!" HorizontalAlignment="Center"
VerticalAlignment="Center">
<Button.Style>
<Style TargetType="Button">
<Setter Property="Background" Value="LightBlue"/>
<Setter Property="Foreground" Value="White"/>
<Setter Property="FontSize" Value="16"/>
<Setter Property="Padding" Value="10"/>
<Style.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter Property="Background" Value="DarkBlue"/>
</Trigger>
</Style.Triggers>
</Style>
</Button.Style>

www.alexandrumarin.com 207

https://learn.microsoft.com/en-us/dotnet/api/system.windows.markup.xamlreader.load?view=windowsdesktop-7.0
http://www.alexandrumarin.com

</Button>
</Grid>
</Window>

'@

SNodeReader = (New-Object System.Xml.XmINodeReader $Sxaml)
SWindow = [Windows.Markup.XamlIReader]::Load(SNodeReader)

Show the window
Swindow.ShowDialog()

a

File Edit View Tools Debug Add-ons Help

Ne d & o » B« |2 oo o@E.

| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*{Recovered)
| Untitled16.ps1"(Recovered) AppFinder.psi Untitled21.ps1*(Recovered) | Untitled27.ps1*Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recoverad)

| Untitled40.ps1*(Recovered) Untitled46.ps1%(Recoverad) Untitled52.ps1(Recovered) Untitled53.ps1*(Recoverad) Untitled54.ps1*(Recovered)

| Untitledss.ps1*Recovered) Untitled56.ps1*{Recovered) Untitled57.ps1*(Recovered) Untitled58.,ps1*(Recovered) Untitled59.ps1*

| Untitled1.ps1*{Recovered) Untitled4.ps1*(Recovered) X | Untitled5.ps1*{Recovered)

26 | </Window

Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps

29 SNodeReader = (New-Gbject System.Xml.XmINodeReader $xaml)
30 SWindow = [Windows.Markup.XamReader]: :Load(SNodeReader)

32 # Show the window
33 Swindow.ShowDialog()

<Grid>
<Button Content:
<Button.

“IsMouseOver” Value="True"

ty="Background" Value="DarkBlue"/>

</st:
</Button. Stylex
</Button>
Grids

$NodeReader = (New-Object System.Xml.XmINodeReader $xaml)
SWindow = [Windows.Markup. XamReader] : :Load($NodeReader)

Show the window
Swindow. ShowDialog()

Running script / selection. Press Ctrl+Break to stop. Press Ctri+B to break inta debugger.

Commands X
Modules: | All
Name:

A
Add-AppProvisicnedSharedPackageContainer
Add-AppSnaredPackageCantainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer

Add-AppxPackage
Adg-AppxProvisionedPackage
Add-AppVolume

Add-AzADAppPermission
Add-AzADGrouphMember
Add-AzAnalysisServicesAccount
Adg-AzApiMEnagementApToGateway
Add-AzApiManagementApTToProduct
Add-AzApiManagementProduciToGroup
Add-AzApiManagementRegion
Ada-AzpiManagementUserToGroup
Adg-AzApplicationGatewsyAutnenticationCertificate
ayBackendAddressPool

ayBackendHtpSetting
yBackendSetting

Adc-AzhpplicationG:
Add-AzApplicationG

@yCustomError
@yFrontendiPConfig
ayFrontendPort
ttplistensr
ttpListenerCustomError
Canfiguration

stener
rivateLinkConfiguration
TobeConfig
edirectConfiguration
ayRequestRoutingRule
ayRewriteRuleSet

Add-AzApplicationG:
Ada-AzApplicationG

Ln 666 Col 1

We define the XAML layout as a string and store it in the Sxaml variable. The XAML
describes a window with a button. The button has content "Click Me!" and is centered both

horizontally and vertically within the window.

Inside the Button element, we define a Style for the button using the <Button.Style> element.

The style sets various properties of the button, such as Background, Foreground, FontSize,
and Padding. We set the background color to LightBlue, the text color to White, the font size

to 16, and add some padding around the button text.

We also define a Trigger in the style. The trigger is based on the IsMouseOver property of the

button, which detects when the mouse pointer is over the button. When the mouse is over

www.alexandrumarin.com

208

100%

http://www.alexandrumarin.com

the button (Value="True"), we set the background color to DarkBlue. This creates a visual
effect where the button background changes when the mouse hovers over it.

Handling Events and Command Binding in WPF

In WPF, we can handle user interactions and events using event handlers or command
binding. Event handlers are traditional methods that respond to events like button clicks,
while command binding allows us to bind commands directly to controls.

Here's an example of handling a button click event using an event handler:

Add-Type -AssemblyName PresentationFramework

Load XAML with a button and event handler

[xml]Sxaml = @"

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmins:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Event Handling Example" Height="150" Width="300">
<Grid>

<Button Content="Click Me!" HorizontalAlignment="Center"

VerticalAlignment="Center" x:Name="Close"/>
</Grid>

</Window>

'@

Convert XAML to a WPF window object
SNodeReader = (New-Object System.Xml.XmINodeReader $xaml)
Swindow = [Windows.Markup.XamlIReader]::Load(SNodeReader)

Swindow.FindName("Close").add_click({
[System.Windows.MessageBox]::Show("Button clicked!")

)

Show the window
Swindow.ShowDialog()

www.alexandrumarin.com 209

http://www.alexandrumarin.com

File Edit View Tools Debug Add-ons Help

AR E 0 » B|=|68|Boo|s

| Untitled6.ps1-(Recovered)

Untitled7.ps1"{Recovered) Untitled8.ps1*{Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered)

| Untitied16.ps1°Recovered) AppFinderpsl Untitled21.ps1*(Recovered) | Untitled27.ps1"(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered)

|| Untitled40.ps1*Recovered) Untitled46.ps1*(Recovered) Untitled52.ps1*(Recavered) Untitled58ps1*(Recovered) Untitled59.ps1*(Recovered)

| Untitled60.ps1* Recavered) Untitled61.ps1*(Recoverad) Untitied62.ps1*(Recavered) Untitled83.ps1*(Recovered) Untitled64.ps1*(Recovered)

| Untitiedtps1miReconered) X | Untitiedz.ps17iRecavered) Untitled3.ps1=(Recoverad) copyfalder.psl Untitledd,ps1*(Recaversd) Untitleds,ps1*(Recoverad)
8 Title="Event Handling Example” Height="150" Width="300">
9 <Grids
10 <Button Content="Click Me!" Horizontaldlignment="Center" VerticalAlignment="Center" x:Name="Close"/»
11 </Grid>
2 .’Zé“” ndov Button dlicked!
14
15 % Convert XAML to a WPF window object
16 SNodeReader = (New-Object System.Xml.XmINodeReader $xaml) oF
7 Swindow — [Windows.Markup. XamlReader] : :Load($NodeReader)
18
19 [Swindow. FindName("Close"). add_c1ick({ g
20 stem. Windows.MessageBox] : :Show("Button clicked!™) -
21 |B
22

23 # Show the window
24 Swindow. ShowDialog()

Add-Type -AssemblyName PresentationFramewor|

Load XAML with a button and event handler
[xm1]$xaml = @”
<Window

xmlns="http: //schemas.micr /xam1/presentation”

xmlns http://schemas.microsoft. com/winfx/2006/xam]

Title="Event Handling Example” Height="150" Width="300

<Grid
Button Content 14 Me!" HorizontalAlignment="Center"” VerticalAlignment="Center"
Gri

</
i ndow>

Convert XAML to a WPF window object
$NodeReader = (New-Object System.Xml.xmlNodeReader $xaml)
Swindow = [Windows.Markup.XamIReader] : :Load($NodeReader)

$window. FindName("Close") . add_click({
System. Windows. MessageBox] : : Show("Button clicked!

Show the window
$window. ShowDialo

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger.

Commands X

Modules: | All

Name:

A

Ada-AppProvisionedSharedPackageContainer
Add-AppSharedPackageContainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer

Adc-AppxPackage
Add-AppxProvisionedPackage

Add-AppxVolume

Add-AzADAppPermission
Add-AzADGroupMember
Add-AzAnalysisServicesAccount
Add-AzApiManagementApiToGateway
Add-AzApiManagementApToProduct
Add-AzpiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Ade-AzApplicationGatewayAutnenticationCertificate
ayBackendAddressPool

ayBackendHtipSetting

stewayBackendSetting
atewayCustomErar

Add-AzApplicationGatewsyFrontendiPConfig
Add-AzApplicationGa
stewayHitpListener

ayFrontendport

ayHitpListenerCustomError
Add-AzApplicationGatewsylPConfiguration
Add-AzApplicationGa
Add-AzApplicationGats
Add-AzApplicationGats
Add-AzApplicationGatewayRedirectConfiguration
Add-AzApplicationGa
Add-AzApplicationGats

wayListener
ewayPrivateLinkConfiguration
ayProbeConfig

wayRequestRoutingRule

Ln 26 Col1

100%

We assigned the x:Name="Close" attribute to the button in the XAML, so we can use the

FindName method to locate the button by its name.

We then attach an event handler to the button using the add_click() method. The event
handler is a script block that will be executed when the button is clicked. In this case, the
event handler displays a message box with the text "Button clicked!" using

System.Windows.MessageBox::Show().

www.alexandrumarin.com

210

http://www.alexandrumarin.com

Enhancing GUI Functionality with PowerShell

Let's take a look at how to improve the functionality of your PowerShell GUI applications.
There are several techniques for making your GUIs more interactive, dynamic, and
responsive, ranging from integrating PowerShell scripts and commands to implementing
error handling and multithreading, so let's take a look at how to create powerful and
user-friendly GUI applications.

Integrating PowerShell Scripts and Commands

One of the most significant benefits of using PowerShell for GUI development is the
seamless integration with PowerShell scripts and commands. To perform complex tasks
and automate processes, you can use the full power of PowerShell right within your GUI
application. Consider the following example:

Add-Type -AssemblyName System.Windows.Forms

Define the main form

Sform = New-Object Windows.Forms.Form
Sform.Text = "Process Viewer"

Sform.Size = New-Object Drawing.Size(500, 300)

Create a button to fetch and display processes
Sbutton = New-Object Windows.Forms.Button
Sbutton.Text = "Get Processes"

Sbutton.Location = New-Object Drawing.Point(20, 20)
Sform.Controls.Add(Sbutton)

Create a text box to display the process information
StextBoxOutput = New-Object Windows.Forms.TextBox
StextBoxOutput.Multiline = Strue

StextBoxOutput.ScrollBars = "Vertical"
StextBoxOutput.Location = New-Object Drawing.Point(20, 60)
StextBoxOutput.Size = New-Object Drawing.Size(200, 250)
Sform.Controls.Add(StextBoxOutput)

Sbutton.Add_Click({
Sprocesses = Get-Process
Soutput = Sprocesses | Select-Object Name, CPU, Memory
StextBoxOutput.Text = Soutput | Out-String

)

www.alexandrumarin.com

21

http://www.alexandrumarin.com

Show the form
Sform.ShowDialog()

>

File Edit View Tools Debug Add-ons Help

& 3 & B >) =] = %] —] = =
‘Untitled?.psV(Recovered) Untitled8.ps1*(Recovered) | SearchApplicationGetUninstallkey.ps1 | Untitled13.ps1*(Recovered)

‘ Untitled27.ps1*(Recovered) | get-azpolicies.psl Untitled33.ps1{Recovered) Untitled40.ps1%(Recovered)

B 0B

Untitled 16.ps1*(Recovered) | AppFinderps1 | Untitled21.ps1*{Recovered) ‘

Untitledd6.ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled58.ps 1*(Recovered) ‘

Untitled59.ps1*(Recovered] Untitled60.ps1*{Recovered) Untitled61.ps1*(Recovered] Untitled62.ps1*(Recovered, Untitled63.ps1*(Recovered] Untitled®4.ps1*(Recovered]
P P P P P P

‘Untltled'l.ps'l"{Recovered) X Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.psl

17 StextBoxOutput.Scrol IBars = “Vertical”

18 StextBoxOutput.Location = New-Object Drawing.Point(20, 60)
19 StextBoxOutput.Size = New-Object Drawing.S5ize(200, 250)
20 Sform.Controls. Add(StextBoxQutput)

21
22 [Sbutton. Add_Click({
23 $processes = Get-Process

24 $output = Sprocesses Select-Object Name, CPU, Memory
25 $textBoxOutput.Text = Soutput Out-5tring

26 |1 e
27

28 # Show the form

29 Sform. ShowDialog() m OCESS
z EE=

$button.Text = "Get Processes” Name
$hutton.Location = New-Object Drawing.Point(20, 20) Memary
§form.Controls. Add($button) -
. _) Adjust Service
Create a text box to display the process information
$textBoxOutput = New-Object Windows.Forms.TextBox AdobelPCBraker
$textBoxOutput.Multiline $true
$textBoxOutput. ScrollBar vertical” Agert
$textBoxOutput.Location = New-Object Drawing.Point(20, 60) AgaregatorHost
StextBoxOutput = New-Object Drawing.S5ize(200, 250) amdfendrer
§form.Controls.Add($textBoxOutput)
~ amdow
{ Sbutton.Add_Click({ AMDRS Serv
| Sprocesses = Get-Process 0.453125
$output = Sprocesses | Select-Object Name, CPU, Memory
$textBoxOutput.Text = $output | Out-String
B

Show the form
$Form. ShowDialog()

| Ctri+C copied selectad text. Unselect or use Ctri+Break to stop operation.
L

Untitledd.ps1*(Recovered) Untitled5.ps1*(Recovered) Untitled6.ps1*(Recovered) ‘

cPU

B 53125

0
015625

0
0.015625

0

Ln 28 Col 16 100%

In this example, we create a button labeled "Get Processes" and attach a click event to it.
When the button is clicked, it executes the Get-Process command and displays the process

information in a text box.

A more elegant way to show such information is to use the GridView functionality that Forms

is offering. We can adjust the above code as such:

Define the main form

Sform = New-Object Windows.Forms.Form
Sform.Text = "Process Viewer"

Sform.Size = New-Object Drawing.Size(500, 300)

Create a button to fetch and display processes
Sbutton = New-Object Windows.Forms.Button
Sbutton.Text = "Get Processes"

Add-Type -AssemblyName System.Windows.Forms

www.alexandrumarin.com

212

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-process?view=powershell-7.3
http://www.alexandrumarin.com

Sbutton.Location = New-Object Drawing.Point(20, 20)
Sform.Controls.Add(Sbutton)

$button.Add_Click({
Sprocesses = Get-Process
Soutput = Sprocesses | Select-Object Name, CPU, Memory
Soutput | Out-GridView -Title "Process Information"

)

Show the form
Sform.ShowDialog()

g-: nin| or: Windows PowerShell ISE = (m]
File Edit View Tools Debug Add-ons Help
AR~ = B x| 9 0| @ | 8|Boo | moe.
| Untitled7.ps1*(Recovered) | Untitled8.ps1*(Recovered) | SearchApplicationGetUninstallKey.ps1 | Untitled13| g5 P Ewe = (] red) ‘
| Untitled27.ps1*(Recovered) | get-azpolicies.ps1 | Untitled33.ps1*(Recovered) Untitled40.ps1*(Recovereq ted) ‘
| ~)
| Untitled59.ps1*(Recovered) | Untitled60.ps1*(Recovered) | Untitled61.ps1*(Recovered) | Untitly ‘
| Untitled1.ps1%(Recovered) X | Untitled2.ps17{Recovered) Untitled3.ps1*(Recovered) copyfolder.ps|) ‘
9 Sbutton = New-Object Windows.Forms.Button |
10 Shutton.Text = "Get Processes”
11 Sbutton.Location = New-Object Drawing.Point(20, 20)
12 §form.Controls. Add($button)
13
14 [Sbutton.Add_Click({
15 fprocesses = Get-Process
16 foutput = Sprocesses Select-Object Mame, CPU, Memory
17 foutput Qut-Gridview -Title "Process Information”
18 | B
19
20 # Show the form
21 §form. ShowDialeg()
22 B Process Information = O X
Define the main form e
$form = New-Object Windows.Forms.Form | EiAchaliicy
$form. Text = "Process Vig
4form.5ize = New-Object D m cpPU Memory
CPU 003125
Create a button to fetq -
$button = New-Object Wing | Memory 4]
Sbutton. Text Get Procq +187
- 0.171875
Sbutton.lLocation = New-OH Cancel
$form.Controls. Add(Sbuttdmes 0
amdfendrsr 0.015625
amdow 0
AMDRSServ 05
1
» AMDRSSrcExt 003125
Show the form ApCent 1.828125
4form. ShowDialog() i . X
AppleMobileDeviceService 0
armeve 0
Ctrl+C copied selected text. Unselect or use Cirl+Break to stop operation. | tn19 Col1 100% |
L

Using Out-GridView a new window will appear and you will also have the possibility to filter
the desired details out of your query.

www.alexandrumarin.com 213

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/out-gridview?view=powershell-7.3
http://www.alexandrumarin.com

Error Handling and User Feedback

In GUI applications, effective error handling is critical for providing a smooth user
experience. PowerShell enables you to gracefully handle errors and provide meaningful
feedback to the user. Let's take a look at how:

Define a button that executes a potentially risky operation
SbuttonRiskyOperation = New-Object Windows.Forms.Button
SbuttonRiskyOperation.Text = "Perform Risky Operation"
SbuttonRiskyOperation.Location = New-Object Drawing.Point(20, 100)
Sform.Controls.Add(SbuttonRiskyOperation)

SbuttonRiskyOperation.Add_Click({

try {

Perform the risky operation here

Do-SomethingRisky

[System.Windows.Forms.MessageBox]::Show("Operation completed
successfully.")

}

catch {

[System.Windows.Forms.MessageBox]::Show("An error occurred: $_", "Error", "OK",
"Error")

}
)

www.alexandrumarin.com 214

http://www.alexandrumarin.com

r
g
File Edit View Tools Debug Add-ons Help
~2 = EDN I = s R N 1 -
Untitled7.ps1*(Recovered) | Untitled8.ps1®(Recovered) | SearchApplicationGetUninstallKey.ps1 | Untitled13.ps1*(Recovered) | Untitled16.ps1*(Recovered) | AppFinder.ps1 | Untitled21.ps1*(Recovered)
Untitled27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) Untitled40.ps1*(Recovered) Untitled46.ps1*(Recovered) Untitled32.ps1*(Recovered) Untitled58.ps1*(Recovered)
Untitled59.ps1*(Recovered) Untitled60.ps1*(Recovered) Untitled61.ps1*(Recovered) Untitled62.ps1*(Recovered) Untitled63.ps1*(Recovered) Untitled4.ps1*(Recovered)

Untitled1.ps1*(Recovered) X Untitled2.ps1*(Recovered) Untitled3 ps1*(Recovered) copyfolder.psi Untitled4.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled6.ps1*(Recoverad)
23 HSbuttonRiskyOperation.Add_Click({

24 [try {

25 # Perform the risky operation here

26 Do-SomethingRisky

27 [System.Windows.Forms.MessageBox] : : Show("Operation completed successfully.™)

28 T

29 [catch {

30 [System.Windows. Forms.MessageBox] : :Show("An error occurred: £_", "Error™, "OK", "Error™)

31

32 [B

33

34 # Show the form ol tiq

35 Sform.ShowDialog()

36
An errar occurred: Something went wrong during the risky
operation,

Simulate a potentially risky operation (for example purposes)
$randomNumber = Get-Random -Minimum O -Maximum 5
1t ($randomNumber -1t 3) {

throw "Something went wrong during the risky operation.”™

$buttonRiskyOperation. Add_Click({
try {
Perform th operation here
Do-Somethingl
[System.Wind .MessageBox] : : Show("Operation completed successfully.™)

1
catch {
[System.Windows . Forms .MessageBox] : :Show("An error occurred: $_", "Error”, "OK", "Error™)}

1

n

Show the form
$form. ShowDialog()

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. Ln 207 Cal1 100%

In this example, we create a button that performs a potentially risky operation. We wrap the
operation inside a try block and handle any errors using the catch block. If an error occurs, a
message box with the error message will be displayed to the user.

We define a button object called SbuttonRiskyOperation. The button will trigger the
potentially risky operation when clicked. The button's text is set to "Perform Risky Operation,'
and it is positioned at coordinates (20, 100) on the form.

The SbuttonRiskyOperation.Add_Click event handler is used to specify the action that occurs
when the button is clicked. Inside the event handler, we place the potentially risky operation,
which is represented by the Do-SomethingRisky function.

The Do-SomethingRisky function is a PowerShell function designed to simulate a potentially
risky operation (for demonstration purposes). In this example, it generates a random number
and throws an error if the number is less than 3, representing a potential failure scenario.

Within the click event handler, we use a try block to attempt the risky operation. If the
operation fails (i.e., the Do-SomethingRisky function throws an error), the catch block is
executed.

In the catch block, we display an error message using a message box from the
System.Windows.Forms namespace. The error message provides user feedback about the
encountered issue.

www.alexandrumarin.com 215

http://www.alexandrumarin.com

Working with PowerShell Modules

Modules play an important role in extending the functionality of the core language in
PowerShell. They enable you to efficiently organize, reuse, and distribute your scripts and
functions. In this chapter, we will delve into the world of PowerShell modules, learning what
they are, how to install and import them, and how they can help you create robust and
modular scripts.

Introduction to Modules

What are Modules?

Modules are PowerShell code units that contain functions, cmdlets, variables, and other
resources. They function as libraries, encapsulating specific functions and making your
scripts more organized and maintainable.

Modules enable you to break down complex scripts into smaller, reusable components,
making your codebase easier to manage and maintain.

Once you've created a module, you can use it in multiple scripts and sessions, promoting
code reuse and consistency.

Namespace isolation provided by modules prevents naming conflicts between different
modules or scripts. Modules can be packaged and distributed, allowing you to share your
code or deploy it to various systems.

Installing and Importing Modules

PowerShell modules are generally distributed through the PowerShell Gallery or other
sources. To install a module from the PowerShell Gallery, you can use the Install-Module
cmdlet:

Install-Module -Name ModuleName

Once installed, you can import the module to access its functions and cmdlets in your
current session using Import-Module:

Import-Module -Name ModuleName

www.alexandrumarin.com 216

https://learn.microsoft.com/en-us/powershell/module/powershellget/install-module?view=powershellget-2.x
http://www.alexandrumarin.com

Exploring Available Modules

You can discover available modules using the Find-Module cmdlet, which searches the
PowerShell Gallery for modules matching a specific name or keyword:

Find-Module -Name ModuleName

" 2 Administrator: Windows Powt X = |
PS C:\Users\User> find-module
Version Name Repository

18.1.8 Az PSGallery

PS C:\Users\User> |

Description

Microsoft Azure PowerShell - Cmdlets to manage r...

To see which modules are already installed on your system, you can use the Get-Module

cmdlet:

Get-Module

www.alexandrumarin.com

217

https://learn.microsoft.com/en-us/powershell/module/powershellget/find-module?view=powershellget-2.x
https://www.powershellgallery.com/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-module?view=powershell-7.3
http://www.alexandrumarin.com

B administrator: Windows Powt

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSwWindows
PS C:\Users\User> get-module

ModuleType Version Name

Script 2.0.8 PSReadLine {Get-PSReadLineKeyHandler, Get-PSReadLineOption, Remove-PS...

:\Users\User> |

www.alexandrumarin.com 218

http://www.alexandrumarin.com

Using Modules to Extend PowerShell Functionality

Modules contain cmdlets and functions that extend the capabilities of PowerShell. Once
imported, you can use these cmdlets and functions in the same way you would any other
PowerShell command. For instance, if you have a module called "MyModule" and a function
called "Get-MyData," you can use it as follows:

Import-Module -Name MyModule
Get-MyData

Creating your own custom modules allows you to bundle your functions and cmdlets for
easy distribution and reuse. To create a module, simply organize your functions in a script
file and save it with a ".psm1" extension. Then, use New-ModuleManifest to create a module
manifest that describes your module's metadata, such as author, version, and description.

Let's build a simple custom PowerShell module with two functions: one for calculating the
area of a square and one for calculating the area of a circle. Save the following code as
"MyMathModule.psm1" in a text file:

Define the functions

function Get-SquareArea {
param (
[double]SSideLength

)

if (SSideLength -le 0) {
throw "Side length must be greater than 0."

}

Sarea = $SideLength * $SideLength
return Sarea

}

function Get-CircleArea {
param (
[double]$Radius
)

if (SRadius -le 0) {
throw "Radius must be greater than 0."

}

Sarea = [Math]::PI * (SRadius * SRadius)

www.alexandrumarin.com 219

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-modulemanifest?view=powershell-7.3
http://www.alexandrumarin.com

return Sarea

Export the functions
Export-ModuleMember -Function Get-SquareArea, Get-CircleArea

- — _— - —
E¥ Administrator: Windows PowerShell ISE = (m] *
Eile Edit View Tools Debug Add-ons Help
O & =k & B x| 9 B @ |8 | Boo|@t .
‘ Untitled1.ps1*(Recoverad) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.psi Untitled4.ps1*(Recoverad) Untitled5.ps1*(Recoverad) |
‘ Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled 13.ps1*(Recovered) |
‘ Untitled16.ps1*(Recovered) AppFinder.ps1 Untitled21.ps1*(Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) | &
‘ Untitled40.ps1*(Recovered) Untitledd6.ps1*(Recovered) | Untitled52.ps1*(Recovered) | Untitled58.ps1*(Recovered) | Untitled59.ps1*(Recovered) |
‘ Untitled60.ps1*(Recovered) Untitled61.ps1*(Recovered) Untitled62.ps1*(Recovered) Untitled63.ps1*(Recovered) Untitled64.ps1*(Recovered) MyMathModule.psm1 x |

7 Ldouble]SRadius

18

19

20 H if ($Radius -le 0) {

21 throw "Radius must be greater than 0."

22 K

23

24 $area = [Math]::PI = ($Radius = $Radius)

25 return Sarea

26 [}

28 # Export the functions

Start a background job to simulate a time-consuming task
$backgroundJob = Start-Job -ScriptBlock {
Start-Sleep -Seconds 10 # Simulate a time-consuming task
[System. Windows. Forms .MessageBox] : :Show("Long task completed.™)

1

Register an event to enable the button after the task is completed
Register-ObjectEvent -InputObject $backgroundlob -EventName StateChanged -Action {
1t ($event. SourceEventArgs.NewState q "Completed") {
Enable the button after the task
$buttonLongTask.Enabled = $true

show the form
$form. ShowDialog ()

Cancel

| Completed Ln 30 Col 1 100%
L

Save this file in the "MyMathModule" directory of your PowerShell modules directory. The
modules directory is usually found at
Senv:USERPROFILE\Documents\WindowsPowerShell\Modules for the current user.

www.alexandrumarin.com 220

http://www.alexandrumarin.com

B® Powershell book x B mMymathModule

Tl Sort ~

8 > Documents > WindowsPowerShell > Modules > MyMathModule

Name Date modified

B MyMathModule.psm1

[1L yMathMc

If the "Modules" folder does not exist, create it manually.

After saving the file, you can use the custom module in your PowerShell sessions. To import
and use the module, follow these steps:

1. Open a new PowerShell session.
2. Import the custom module:

Import-Module MyMathModule

3. Now, you can use the functions provided by the module:

Calculate the area of a square with side length 5
Get-SquareArea -SideLength 5

Calculate the area of a circle with radius 3
Get-CircleArea -Radius 3

www.alexandrumarin.com 221

http://www.alexandrumarin.com

2 windows Powershell ® + v

PS C:\Users\User> Import-Module MyMathModule
PS C:\Users\User> Get-SquareArea 5
25

PS C:\Users\User> Get-CircleArea
28.2743338823081

PS C:\Users\User> |

Exporting Functions

You can export functions to make specific functions available for use outside of the module.
When you create functions within a module, they are only accessible within the scope of that
module and cannot be used from outside.

When you export a module's functions, you make them available to other PowerShell
sessions or scripts. This allows you to write reusable code that can be shared and used
across multiple scripts and scenarios. It also assists you in organizing your module by
exposing only the necessary functions to the outside world while hiding the rest.

You must use the Export-ModuleMember cmdlet to export functions from a module. This
cmdlet allows you to specify which functions you want to export explicitly. As an example,
consider the following:

Suppose we have a module named "MyModule" with three functions: Get-User,
Get-Computer, and Get-Process. To export only the Get-User and Get-Computer functions,
you can use the following code in your module file ("MyModule.psm1"):

Define the functions inside the module
function Get-User {
Function logic here

www.alexandrumarin.com 222

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/export-modulemember?view=powershell-7.3
http://www.alexandrumarin.com

function Get-Computer {
Function logic here

function Get-Process {
Function logic here

Export the specified functions
Export-ModuleMember -Function Get-User, Get-Computer

In this example, only the Get-User and Get-Computer functions will be exported, making
them available for use outside of the module. The Get-Process function will remain internal
to the module and cannot be accessed directly from outside.

To use the exported functions, you can import the module into your PowerShell session
using the Import-Module cmdlet:

Import-Module MyModule

Now you can use the exported functions from the module
Get-User
Get-Computer

www.alexandrumarin.com 223

http://www.alexandrumarin.com

PowerShell with Active Directory and Group
Policies

Active Directory (AD) is a Microsoft-developed centralized directory service that provides a
single point of authentication and authorization for users, computers, and resources in a
Windows network environment. It is crucial in the management of security and access
control across an organization's IT infrastructure. Active Directory, which includes domains,
forests, and trust relationships, is widely used in Windows-based environments.

Active Directory's key components include domains, domain controllers, forests,
organizational units (OUs), group policy, and trust relationships. Domains are logical groups
of network objects that are managed by domain controllers, which handle user
authentication and authorization. Forests are collections of domains that define the scope of
replication and form security boundaries. Organizational Units (OUs) enable administrators
to more precisely organize and manage objects. Administrators can use Group Policy to
define settings and restrictions for users and computers. Trust relationships establish
connections between domains, allowing for cross-domain collaboration.

Centralized management, single sign-on (SSO), scalability, group-based access control,
replication and redundancy, and integration with other Microsoft services are all advantages
of Active Directory.

Administrators can automate various Active Directory tasks using PowerShell's scripting
capabilities, making it an essential tool for efficiently managing and securing large-scale IT
environments. The integration of PowerShell with Active Directory simplifies administrative
tasks such as user management, group policies, and querying AD information, increasing IT
professionals' productivity.

www.alexandrumarin.com 224

http://www.alexandrumarin.com

Managing Users and Groups

PowerShell includes a set of cmdlets that are specifically designed for Active Directory
manipulation, making it much easier to manage and automate various tasks within an Active
Directory environment. The Active Directory module contains these cmdlets, which can be
imported and used in PowerShell scripts or interactive sessions.

e Get-ADUser: This cmdlet retrieves user objects from Active Directory based on the
filter criteria you specify. It enables you to query user properties such as name, email,
and group membership, among others.

e New-ADUser: You can use this cmdlet to create new user accounts in Active
Directory, modifying properties such as name, username, password, and group
memberships.

e Set-ADUser: This cmdlet allows you to change the properties of existing user
accounts, such as names, passwords, and group memberships.

e Remove-ADUser: As the name suggests, this cmdlet allows administrators to remove
or delete user accounts from Active Directory.

e Get-ADGroup: This cmdlet retrieves Active Directory group objects, allowing you to
obtain information about security groups, distribution groups, and other custom
groups.

e New-ADGroup: You can use this cmdlet to create new Active Directory groups and
specify their type and properties.

e Set-ADGroup: Administrators can use this cmdlet to change the properties of existing
groups, such as adding or removing members, changing group names, or updating
group attributes.

e Remove-ADGroup: This cmdlet is used to remove or delete groups from Active
Directory.

e Get-ADComputer: This cmdlet retrieves computer objects from Active Directory,
assisting in the collection of information about domain computers.

e New-ADComputer: You can use this cmdlet to create new computer accounts in
Active Directory by specifying properties such as name, operating system, and
organizational unit (OU).

e Set-ADComputer: Administrators can use this cmdlet to change the properties of
existing computer accounts, such as renaming computers or updating other
attributes.

e Remove-ADComputer: This cmdlet is used to remove or delete computer accounts
from Active Directory.

These are just a few of the most important Active Directory cmdlets. Furthermore,
PowerShell includes a plethora of other cmdlets and parameters for managing
organizational units (OUs), group policy objects (GPOs), and domain controllers.
Administrators can automate complex tasks, perform bulk operations, and efficiently
manage their Active Directory infrastructure by combining these cmdlets with PowerShell's
scripting capabilities.

www.alexandrumarin.com 225

https://learn.microsoft.com/en-us/powershell/module/activedirectory/get-aduser?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/new-aduser?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/set-aduser?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/remove-aduser?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/get-adgroup?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/new-adgroup?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/set-adgroup?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/remove-adgroup?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/get-adcomputer?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/new-adcomputer?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/set-adcomputer?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/remove-adcomputer?view=windowsserver2022-ps
http://www.alexandrumarin.com

Let's look at some examples of how to use these cmdlets:

Creating a New User:

New-ADUser -Name "John Doe" -SamAccountName "johnd" -UserPrincipalName
"johnd@example.com” -GivenName "John" -Surname "Doe" -Enabled Strue
-AccountPassword (ConvertTo-SecureString "P@sswO0rd" -AsPlainText -Force)

B Administrato ndows PowerShell ISE = O
File Edit View Tools Debug Add-ons Help
= H o4 g » ’ B= |8 Eoo0 mm.

Untitled1.ps1* X & Commands X x
1 New-ADUser -Name "John Doe" -SamAccountName "johnd"” -UserPrincipalName "johnd@example.com” -GivenName
Modules: | All ~ |Refresh

Name:

A

Add-ADCentralAccessPolicyMember
Add-ADComputerServiceAccount
Add-ADDomainControllerPasswordReplication
Add-ADDSReadOnlyDomainControllerAccount
Add-ADFineGrainedPasswordPolicySubject
Add-ADGroupMember
Add-ADPrincipalGroupMembership
Add-ADResourcePropertylistMember
Add-AppvClientConnectionGroup
Add-AppvClientPackage

ministrator> Add-AppvPublishingServer

Add-AppxPackage

dministrator> New-ADUSser -Name “John Doe" -SamAccountName “johnd" -UserPrincipalName "johnd@

| Active Directory Users and Computers — m] *
File Action View Help
e 1EH /0 XFERHEIRaETE%
: Active Directory Users and Computers [LAB-DC.lab.loc|| Name Type Description -
;— Saved Queries %Allnwed RODC Password Replication Group Security Group... Members in this group can have their passwords replicated
v Ia.h.ln:.al. %Cert Publishers Security Group... Members of this group are permitted to publish certificates
- i:“r‘::uters %Cluneab\a Domain Coentrollers Security Group... Members of this group that are domain contrellers may be
:__. Domain Controllers %CUI’]ﬁgMQLCU”E(tedF”ESf-\[CESS Security Group... Members have access to view collected files by software i
Z ForeignSecurityPrincipals %ConfigMgr_DViewA(cess Se:ur?ty Group.. Membersin th?s group have the rEquirefj access for usins 4
5 Managed Service Accounts %Demed ROD.C.Password Replication Group Se:ur!ty Group.. Members in this group CEI"I.HDt I'!ave their passwords replica 100%
= Users %DHCP Administrators Security Group... Members who have administrative access to the DHCP Sen
- %DHCP Users Security Group... Members who have view-only access to the DHCP service
%DnsAdmms Security Group... DNS Administrators Group
%DnsUpdatePruxy Security Group... DNS clients who are permitted to perform dynamic update
%Dumam Admins Security Group... Designated administrators of the domain
%Domam Computers Security Group... All workstations and servers joined to the domain
EBDomam Controllers Security Group... All domain contrellers in the domain
%Domam Guests Security Group... All demain guests
%Dnmam Users Security Group... All domain users
%Enterpnse Admins Security Group... Designated administrators of the enterprise
%Enterprlse Key Admins Security Group... Members of this group can perform administrative actions
%Enterprise Read-only Demain Controllers Security Group... Members of this group are Read-Only Domain Coentrollers i
%Group Policy Creator Owners Security Group... Members in this group can modify group policy for the doi
8.;Guest User Built-in account for guest access to the computer/domain
%HelpLibraryUpdaters Security Group...
2 Saa— User
User b
< > >

Adding a User to a Group:

Add-ADGroupMember -ldentity "MarketingGroup" -Members "johnd"

www.alexandrumarin.com 226

http://www.alexandrumarin.com

& 2amin

= O X

File Edit View Tools Debug Add-ons Help

ST = g9 B =B m o @[,

Untitled1ps1* X G Commands X x

1 aDGroupMember -Identity "Marketing” -Members "johnd"

Modules: | All ~ | |Refresh
Name:
A

Add-ADCentralAccessPolicyMember
Add-ADComputerServiceAccount
Add-ADDomainControllerPasswordReplication
Add-ADDSReadOnlyDomainControllerAccount
Add-ADFineGrainedPasswordPolicySubject
Add-ADGroupMember
Add-ADPrincipalGroupMembership
Add-ADResourcePropertyListMember
ers\Administrator> Add-ADGroupMember -Identity "Marketing” -Members “johnd" || | Add-AppyClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage

ers\Administrator>

O X
File Action View Help
e amEl £ 8IXE LTaETIR
=] ﬁ\t.ctl\.rE Dlrectury Users and Computers [LAB-DC.lab.loc|| Name MarketingGroup Properties ? % ~
J Saved Queries %ConfigMgr_DV\ewA(cess uired access for using ¢
v & 'f’.b“;c_?t‘_ 82 Denied RODC Password K| General Members Member Of Managed By E their passwords replica
j CUDImI:utErs %DHCP Administrators Members: access to the DHCP Sen
- . %DHCP Users ss to the DHCP service
<1 Domain Controllers £, Drsadrmins Mame Active Directory Domain Services Folder
| ForeignSecurityPrincipals s 1
| Managed Senvice Accounts %DnsUpdatePrnxy erform dynamic update 100%
| Users %Domam Admins main
%Dumain Computers to the domain
S&Domain Controllers in

%Dnmain Guests
%Domam Users
%Enterpmse Admins terprise

S&Enterpr\se Key Admins n administrative actions
%Enterpm;e Read-only Do
%Gruup Policy Creator Owi
8.3Guest
S&HelpL\braryUpdater;

E) horatiu viadasel

E)Juhn Doe Add.. Remove
%KeyAdmins n administrative actions
%Marke’(ingﬁroup
H2 Protected Users s Ppply additional protections
E) radu popescu A
< >

nly Domain Controllers i
group pelicy for the doi
the computer/dermain

de

~
v

Creating a New Group:

New-ADGroup -Name "SalesGroup" -SamAccountName "Sales" -GroupScope Global
-GroupCategory Security

www.alexandrumarin.com 227

http://www.alexandrumarin.com

B Administrator
File Edit View Tools

b e d

Untitled1.ps1* X

Debug Add-ons Help

g » ? | ¥

ministrator> New-ADUser =-Name "John Doe" =-SamAccountName "johnd" =-UserPrincipalName "johnd@exj

\Administrator> New-ADGroup

:\Users\Administrator>

=Name

B =

8 E m

salesGroup” -SamAccountMame "Sales"

.

1 New-ADGroup -Name "SalesGroup” -SamAccountName "Sales" -GroupScope Global -GroupCategory Security

-GroupScope Global

& Commands X x

Modules: | All ~ | |Refresh
Name:
A

Add-ADCentralAccessPolicyMember
Add-ADComputerServiceAccount
Add-ADDomainControllerPasswordReplication
Add-ADDSReadOnlyDomainControllerAccount
Add-ADFineGrainedPasswordPolicySubject
Add-ADGroupMember
Add-ADPrincipalGroupMembership
Add-ADResourcePropertylistMember
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage

=-Group!

] Active Directery Users and Computers - O X
File Action View Help
OXEER BRI TRETE%
| Active Directory Users and Computers [LAB-DC.labloc|| Name Type Description ~
‘.J Saved Querles %Enterpmse Key Admins Security Group... Members of this group can perform administrative actions
v # I?b‘\uca\ %Enterpmse Read-only Demain Controllers Security Group... Members of this group are Read-Only Demain Controllers i
j El;l::utar; %Gmup Policy Creator Owners Security Group.. Members in this group can modify group pelicy for the do
| 5| Domain Controllers &Guest User Built-in account for guest access to the computer/domain
=] ForeignSecurityPrincipals %HelpL\hraryUpdatEr; Security Group...
| Managed Service Accounts &horatluvladasel User 100%
| Users &Juhn Doe User
%KeyAdmins Security Group... Members of this group can perform administrative actions
%Protec’ced Users Security Group... Members of this group are afforded additional protections
83 radu popescu User
%RAS and A5 Servers Security Group... Servers in this group can access remote access properties o
%Read-un\yDumam Controllers Security Group... Members of this group are Read-Only Demain Controllers i
Security Grou
%S(hema Admins Security Group... Designated administrators of the schema
%SMSAdrﬂins Security Group... Members have access to the SMS Provider.
%SIVIS_S\teSystemTUS\tESewerCUnnectlun_MP..‘ Security Group... ConfigMgr accounts or machine accounts used for connec
%SIVISﬁS\teSy;temTUS\tEServerCunnectiunisM.‘. Security Group.. ConfigMgr accounts or machine accounts used for connec
J EESIVIS_S\teSy;terﬂToS\tESewerConnection_Sta‘.. Security Group.. ConfighMgr accounts or machine accounts used for connec
7 5&SIVIS_S\teTDSiteConnaction_CU Security Group.. ConfighMgr accounts or machine accounts used by other si
%SQLSENerEODSSQLBmw;erU;erSLAB-DC Security Group... Members in the group have the required access and privile
%WSUSAdmmlstraturs Security Group... Members of this group can administer the Windows Server
%WSUS Reporters Security Group... Members of this group can generate reports but cannot ap
v
< > € >

www.alexandrumarin.com

228

http://www.alexandrumarin.com

Automating Active Directory Tasks

PowerShell excels at automating repetitive Active Directory tasks, saving time and lowering
the risk of errors. You can, for example, automate user provisioning, group membership
updates, and even Active Directory cleanup.

Administrators can use PowerShell to perform bulk operations on Active Directory objects.
This is especially useful when creating, modifying, or deleting multiple users, groups, or
computers at the same time. Administrators can save time and ensure consistency across
the directory by scripting these tasks.

These PowerShell scripts can be tailored to specific organizational requirements.
Administrators can customize scripts to meet their specific needs, whether it's setting user
attributes, managing group memberships, or assigning permissions.

Many Active Directory tasks, such as creating new user accounts, resetting passwords, or
updating group memberships, involve repetitive actions. PowerShell automation can help to
automate these tasks and eliminate the need for manual intervention.

Manual tasks are prone to errors, resulting in inconsistencies in Active Directory data.
PowerShell automation ensures that tasks are completed consistently and correctly,
reducing the possibility of errors.

PowerShell scripts can also be scheduled to run at predefined intervals, enabling
administrators to automate routine maintenance tasks or data cleanup processes. This aids
in the optimization and upkeep of the Active Directory environment.

PowerShell automation can also be used to generate detailed reports on various aspects of
Active Directory, such as user activity, group membership, and computer inventory. These

reports help with auditing and compliance.

Let's take an example on how you can possibly automate the user provisioning:

Read user information from a CSV file
Susers = Import-Csv -Path "C:\Users\import\new_users.csv"

Loop through each user and create them in Active Directory
foreach (Suser in Susers) {

New-ADUser -Name Suser.FullName -SamAccountName Suser.Username
-UserPrincipalName "S(Suser.Username)@example.com" -GivenName Suser.FirstName
-Surname Suser.LastName -Enabled Strue -AccountPassword (ConvertTo-SecureString
Suser.Password -AsPlainText -Force)

}

www.alexandrumarin.com 229

http://www.alexandrumarin.com

Querying Active Directory Information

Administrators must be able to query Active Directory information using PowerShell in order
to efficiently retrieve and analyze data from the directory. PowerShell includes a number of
cmdlets for querying, filtering, and refining search results. Get-ADUser, Get-ADComputer and
Get-ADGroup cmdlets are frequently used to retrieve objects based on criteria such as name,
organizational unit, attributes, or custom filters.

PowerShell's flexibility allows administrators to construct complex queries using logical
operators such as -and, -or, and -not, and comparison operators like -eq, -ne, -like, -gt, -It, and
more. This enables precise and targeted searches to narrow down the results to meet
specific requirements.

Furthermore, administrators can use the -Filter parameter in conjunction with LDAP query
syntax to perform advanced searches with complex conditions. This gives you access to a
variety of options, such as searching based on user properties, group membership, account
status, and more.

Administrators can further process and manipulate the retrieved data using PowerShell
variables, loops, and conditional statements, enabling comprehensive reporting, automated
actions, and decision-making based on the query results.

Furthermore, the integration of PowerShell with other technologies such as SQL, CSV, or
Excel allows administrators to export and import data between Active Directory and external

systems for data analysis or cross-platform integration.

For example, we can get a list of users in an CN:

Get-ADUser -Filter * -SearchBase "CN=Users,DC=example,DC=com"

www.alexandrumarin.com 230

https://learn.microsoft.com/en-us/powershell/module/activedirectory/get-aduser?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/get-adcomputer?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/get-adgroup?view=windowsserver2022-ps
http://www.alexandrumarin.com

Administrator: Windows PowerShell ISE

File Edit View Tools

H 4

Untitled1.ps1* X
1 Get-ADUser -Filter *

Debug Add-ons Help

= S

DistinguishedName
Enabled

GivenName John
Name John Doe
objectClass use!
ObjectGUID
SamAccountName johnd

SID 5-1-5-21-395790505
surname
UserPrincipalName

: True

oe
johnd@example.com

rs\Administrator>

Completed

~| Builtin

| Computers

i Domain Controllers

~ ForeignSecurityPrincipals
Managed Service Accounts
© Users

; » B = &

-SearchBase "CN=Users,DC=lab,DC=Tocal"

: CN=John Doe,CN=Users,DC=lab,DC=local

r
d7511fd-c927-43c0-a979-81lad8bdec9zf

35703826-1680048279-1601

g v
%Allawed RODC Password Replication Group
%Cer‘t Publishers

%Cloneable Domain Controllers
%CnnfigMgr_CnIIectedFilesA(:ess
%ConﬁgMgr_DVlewAccess

%Demed RODC Password Replication Group
%DHCP Administrators

42, DHCP Users

E&DnsAdmins

%DnsUpdaterx}f

%Domam Admins

%Dumam Computers

%Dumam Controllers

%Domam Guests

EEDomam Users

%Enterprise.ﬁdmins

%Enterpnse Key Admins

%Enterprlse Read-only Domain Centrollers
%Gruup Policy Creator Qwners

E.;Guest

%HelpLibraryUpdaters

<

Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group..
Security Group...
Security Group...
Security Group...
Security Group...
Security Group...
Security Group..

User

Security Group...

o O X
& Commands X x
Modules: | All ~ | |Refresh
Narne:
A

Add-ADCentralAccessPolicyMember
Add-ADComputerServiceAccount
Add-ADDomainControllerPasswordReplication
Add-ADDSReadOnlyDomainControllerAccount
Add-ADFineGrainedPasswordPolicySubject
Add-ADGroupMember
Add-ADPrincipalGroupMembership
Add-ADResourcePropertylistMember
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-Appxvolume
Add-BCDataCacheExtension

Add-BitsFile
Add-CertificateEnrollmentPolicyServer
Add-ClusteriSCSITargetServerRole
Add-Computer

Ln1 Col1

100%

Members in this group can have their passwords replicated
Members of this group are permitted to publish certificates
Members of this group that are domain controllers may be
Members have access to view collected files by software iny
Members in this group have the required access for using ¢
Members in this group cannet have their passwords replica
Members who have administrative access to the DHCP Sen
Members who have view-only access to the DHCP service
DNS Administrators Group

DNS clients who are permitted to perform dynamic update
Designated administrators of the domain

Allworkstations and servers joined to the domain

All domain controllers in the domain

All domain guests

All domain users

Designated administrators of the enterprise
Members of this group can perform administrative actions
Members of this group are Read-Only Demain Controllers i
Members in this group can medify group policy for the do
Built-in account for guest access to the computer/domain

Find a Specific Group:

Get-ADGroup -Filter {Name -like "Sales*"}

www.alexandrumarin.com

231

http://www.alexandrumarin.com

Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help
H o » B || B

Untitled1.ps1* X
1 Get-ADGroup -Filter {Name -like "Market*"}

ers\Administrator> Get-ADGroup =-Filter {Name -1ike "Market*"}

DistinguishedName : =MarketingGroup,CN=Users ,DC=1ab,DC=Tocal
GroupCategory
GroupScope

Name : MarketingGroup

ObjectClass : group

objectGUID : lalSbbcc-c7cd-4ee3-869b-7c078b1a3847
SamAccountName : Marketing

SID : §-1-5-21-395790505 235703826-1680048279-1603

PS C:\Users\Administrator>

Completed

. O X
Commands X x
Modules: | All ~ | |Refresh|
MName:
A

Add-ADCentralAccessPolicyMember
Add-ADComputerServiceAccount
Add-ADDomainControllerPasswordReplication
Add-ADDSReadOnlyDomainControllerAccount
Add-ADFineGrainedPasswordPolicySubject
Add-ADGroupMember
Add-ADPrincipalGroupMembership
Add-ADResourcePropertyListMember
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-AppxVolume
Add-BCDataCacheExtension

Add-BitsFile
Add-CertificateEnrollmentPolicyServer
Add-ClusteriSCS[TargetServerRole
Add-Computer

Ln 248 Col 28 100%

www.alexandrumarin.com

232

http://www.alexandrumarin.com

Managing Group Policy with PowerShell

Using PowerShell to manage Group Policy gives administrators powerful capabilities for
streamlining policy management, automating tasks, and enforcing consistent configurations
across an Active Directory environment. PowerShell includes a set of cmdlets designed
specifically for Group Policy management, allowing administrators to easily create, modify,
and remove Group Policy Objects (GPOs).

PowerShell includes a set of cmdlets dedicated to managing Group Policy Objects (GPOs).
These cmdlets allow administrators to perform GPO management tasks such as creating,
modifying, backing up, and applying GPO settings. Here are some of the most important
GPO cmdlets and their functions:

Get-GPO: This cmdlet returns details about existing GPOs. Administrators can use it
to see a list of all GPOs or to search for specific ones based on names, GUIDs, or
other attributes.

New-GPO: Administrators can use this cmdlet to create a new Group Policy Object. A
new GPO is created in Active Directory by providing a name.

Remove-GPO: As the name suggests, this cmdlet removes a GPO from the Active
Directory. Administrators can use it to delete GPOs that are no longer needed.
Backup-GPO and Restore-GPO: These cmdlets make it easier to backup and restore
GPOs. Administrators can make backups of GPO configurations and restore them as
needed in disaster recovery or migration scenarios.

Get-GPRegqistryValue and Set-GPRegistryValue: Administrators can use these
cmdlets to manage registry-based settings within GPOs. They retrieve or change
registry values contained in a GPO.

Get-GPInheritance and Set-GPInheritance: These cmdlets are used to manage the
inheritance of Group Policies. GPO inheritance behavior on specific organizational
units can be viewed and modified by administrators.

New-GPLink and Remove-GPLink: These cmdlets are used to link or unlink GPOs
from Active Directory organizational units (OUs). When GPOs are linked to OUs, it
determines which policies apply to the objects contained within them.
Invoke-GPUpdate: This cmdlet forces remote computers to apply policy changes
immediately by triggering a Group Policy update.

Get-GPResultantSetOfPolicy (RSOP): This cmdlet creates a set of policy settings for a

single user or computer. It enables administrators to examine the combined impact
of multiple GPOs on a single object.

Administrators can use Group Policy cmdlets in conjunction with other PowerShell modules
for advanced scenarios. Combining Group Policy cmdlets with Active Directory cmdlets, for
example, enables administrators to automate the creation of GPOs based on AD object
attributes, streamlining policy management in large-scale environments.

www.alexandrumarin.com 233

https://learn.microsoft.com/en-us/powershell/module/grouppolicy/get-gpo?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/new-gpo?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/remove-gpo?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/backup-gpo?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/restore-gpo?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/get-gpregistryvalue?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/set-gpregistryvalue?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/get-gpinheritance?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/set-gpinheritance?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/new-gplink?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/remove-gplink?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/invoke-gpupdate?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/get-gpresultantsetofpolicy?view=windowsserver2022-ps
http://www.alexandrumarin.com

Create a New GPO:

New-GPO -Name "SalesGPO"

¥ Administrator: Windows PowerShell ISE

File Edit View Tools

]

Untitled1.ps1* X
1 New-GPO -Name "SalesGPO"

Debug Add-ons

g »

Help

Administrator> New-GPO -Name

: SalesGPO
: lab.local

DisplayName
DomainName
Domain Admins

GpoStatus
Description
CreationTime
ModificationTime
Userversion
Computerversion
wmiFilter

ettingsEnabled

: AD Version:

dministrator>

Completed
L UILUp FUNLY MdnagEment
v A Forest: lab.local
v g5 Domains
~ 3 lablocal
s Default Domain Policy
s, User Default Settings
i, Workstation Policy
2 Domain Controllers
v [5} Group Policy Objects
= Default Domain Controllers Poli
= Default Domain Policy
=[SalesGPO
= User Default Settings
=] Workstation Policy
+ WMI Filters
E Starter GPOs
Sites
Group Policy Medeling
+ Group Policy Results

G

Set GPO Settings:

[.

“salesGP0"
: LA
: 10ebb349-27fb-4f2d-9122-fc881e85b4cd

0, Sysvol version: 0

. O X
Commands X x
Modules: | All ~ | |Refresh|
Narme:
A

Add-ADCentral AccessPolicyMember
Add-ADComputerServiceAccount
Add-ADDomainControllerPasswordReplication
Add-ADDSReadCnlyDomainControllerAccount
Add-ADFineGrainedPasswordPolicySubject
Add-ADGroupMember
Add-ADPrincipalGroupMembership
Add-ADResourcePropertylistMember
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-AppxVolume
Add-BCDataCacheExtension

Add-EBitsFile
Add-CertificateEnrollmentPolicyServer
Add-ClusteriSCSITargetServerRole
Add-Computer

Ln 19 Col 28 100%
salesGrou
Scope Details Settings Delegation Status
Links
Display links in this location: lab Jocal >
The following sites, domains, and OUs are linked to this GPO:
Location - Enfoced Lik Enabled Path

Security Filtering

The settings in this GPO can only apply to the following groups, users, and computers:
~

Name
52, Autherticated Users

Add... Remove

WMI Filtering
This GPO is linked to the following WMI filter:

<none ~

Set-GPRegistryValue -Name "SalesGPO" -Key
"HKEY_CURRENT_USER\Software\Microsoft\Office\Common"
"DisableAnimations" -Type DWord -Value 1

-ValueName

www.alexandrumarin.com

234

http://www.alexandrumarin.com

File Edit View Tools Debug Add-ons Help
& W a » e B = &

Untitled1.ps1* X

1 Microsoft\office\Common” -valueName "DisableAnimations” -Type DWord -Value 1

Users\Administrator> Set-GPRegistryValue -Name "SalesGPO" -Key "HKEY_CURRENT_USER’

DisplayName
DomainName
Owner tL# dmins

id : L b-4f2d-9122-fc881le85bdcd
GpoStatus :

SalesGPO

Description
CreationTime
ModificationTime
Userversion
Computerversion
wmiFilter

ol Version: 1
vol version: 0

| Group Policy Management

oftware\Microsoft\(

Commands X X
Modules: | All ~ | |Refresh|
MNarne:

A

Add-ADCentralAccessPolicyMember
Add-ADComputerServiceAccount
Add-ADDomainControllerPasswordReplication
Add-ADDSReadOnlyDomainControllerAccount
Add-ADFineGrainedPasswordPolicySubject
Add-ADGroupMember
Add-ADPrincipalGroupMembership
Add-ADResourcePropertylistMember
Add-AppvClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxFrovisionedPackage
Add-AppxVolume
Add-BCDataCacheExtension

Add-BitsFile
Add-CertificateEnrollmentPolicyServer
Add-ClusteriSCSITargetServerRole
Add-Computer

= O X
PS C
gl File Action View Window Help - &
e xnm 6@
Complete| fo
15k Group Policy Management SalesGPO
e -ﬁ Forest: lablocal Scope Detals Seftings Delegation Status
w |54 Domains
v 3 lablecal Users ~
,”’ Default Domain Policy NT AUTHORITY*ENTERPRISE Read No
s User Default Settings DOMAIN CONTROLLERS
a, Workstation Policy NT AUTHORITY\SYSTEM Edit setlings, delete, modify secuity No
o | Domain Controllers
~ [Group Palicy Objects Computer Configuration (Enabled)
\=[Default Domain Controllers Poli hide
'=] Default Domain Policy T
=[SalesGPO User Configuration (Enabled)
(=] User Default Settings =

(= Workstation Policy
& WMI Filters
3 Starter GPOs
[Sites

Administrative Templates

Group Policy Modeling

oS Extra Registry Settings
 Group Policy Results

Setting

Policy definttions (ADMX files) retrieved from the local computer.

Display names for some settings cannot be found. You might be able to resclve this issue by updating the .ADM files
used by Group Policy Management.

State

Software\Microsoft\Office’\Common'\DisableAnimations 1

hide

hide:

www.alexandrumarin.com

235

http://www.alexandrumarin.com

PowerShell and Azure

Introduction to PowerShell and Azure

PowerShell and Azure work well together to enable cloud administrators and developers to
manage and automate various aspects of their Azure environment. Microsoft PowerShell is
a versatile scripting language and automation framework, and Azure is Microsoft's cloud
computing platform, which provides a wide range of cloud services and resources.

PowerShell's integration with Azure is achieved through Azure PowerShell modules, which
provide cmdlets (commands) specifically designed for managing Azure resources. These
cmdlets allow users to interact with Azure services programmatically, enabling tasks such as
provisioning resources, configuring settings, monitoring performance, and more, all from the
command-line interface.

Users can automate repetitive tasks, deploy and manage resources at scale, and maintain
consistent configurations across their Azure environment by leveraging PowerShell with
Azure.

Advantages of Using PowerShell with Azure

Azure resource management is simplified with PowerShell. Using simple cmdlets,
administrators can create, modify, and delete various Azure services, virtual machines,
storage accounts, and more. This simplified approach saves time and effort, which is
especially important when dealing with large-scale cloud deployments.

PowerShell's primary strengths are automation and scripting. Azure administrators can
automate complex processes such as creating and configuring multiple virtual machines,
configuring networking, and managing access control by writing PowerShell scripts. This
capability allows for the rapid deployment of resources while maintaining consistency and
reducing the possibility of human error.

PowerShell is cross-platform in nature, supporting Windows, macQOS, and Linux. This
cross-platform compatibility extends to Azure PowerShell, allowing administrators to
manage Azure resources from the operating systems of their choice. The consistent
experience across platforms encourages usability and collaboration among diverse teams.
Microsoft's collaboration platform for software development and deployment, Azure DevOps,
integrates seamlessly with PowerShell. PowerShell scripts can be used by developers to
automate continuous integration and continuous deployment (CI/CD) pipelines, resulting in
smooth application delivery and deployment to Azure.

www.alexandrumarin.com 236

https://github.com/Azure/azure-powershell
http://www.alexandrumarin.com

Users can create custom modules and functions tailored to their specific Azure
requirements thanks to PowerShell's extensibility. This adaptability ensures that
administrators can create solutions tailored to their specific requirements and work with
Azure services beyond the default cmdlets provided.

PowerShell can manage on-premises environments and integrate with other Microsoft
products such as Active Directory, Exchange Server, and SharePoint. This integration enables
administrators to carry out unified management tasks that span cloud and on-premises
resources.

For example, creating a new user in Azure Active Directory (Azure AD) using PowerShell is a
straightforward process. Below is an example of how to achieve this:

Sign in to your Azure account (if not already signed in)
Connect-AzAccount

Define user details

SdisplayName = "John Doe"

SuserPrincipalName = "john.doe@yourdomain.onmicrosoft.com"
Spassword = ConvertTo-SecureString "Password123!" -AsPlainText -Force

Create the new user in Azure AD
New-AzADUser -DisplayName SdisplayName -UserPrincipalName SuserPrincipalName
-Password Spassword

In this example, we use the New-AzADUser cmdlet from the Azure Active Directory
PowerShell module to create a new user. The cmdlet allows us to specify the display name,
user principal name (UPN), and password for the new user. Once the cmdlet is executed, a
new user will be created in Azure AD with the provided details.

www.alexandrumarin.com 237

https://learn.microsoft.com/en-us/powershell/module/az.resources/new-azaduser?view=azps-10.2.0
http://www.alexandrumarin.com

Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
= B3 4 B » b

| Untitled1.ps1*(Recovered)

x| &

Untitled2.ps1*(Recovered)

| | Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered)

|
| Untitled16.ps1*(Recovered) AppFinder.ps1 Untitled21.ps1%(Recovered)

| Untitled40.ps1*(Recavered) Untitled48.ps1*(Recovered) Untitled52.ps1*(Recovered)

I | Untitled66.ps1*(Recovered) Untitled67.ps1%(Recovered)

Sign in to your Azure account (if not already signed in)
Connect-AzAccount

Define user details
SdisplayName = "John Doe"
SuserPrincipalName = “john.doed
$password = ConvertTo-SecureString "Passwordl23!

Create the new user in Azure AD

Howm~mwswnk

p

OnPremisessyncenab led
OperatingSystem
OperatingSystemVersion
OtherMail
PasswordPolicy
PasswordProfile

Physicalld

PostalCode

preferredLanguage

ProxyAddress

ShowInAddresslList H
SignInSessionsvalidFromDateTime :

State

StreetAddress
Surname

TrustType

Usagel ocation
UserPrincipalName
UserType
AdditionalProperties

john. doe@

: {[@odata.context, http:

Untitled8.ps1*(Recovered)

Untitled68.ps1*(Recovered)

-AsPlainText -Force

raph.microsoft. col

Boolem.

Untitled3.ps1*(Recovered)

copyfolder.ps1 Untitled4.ps1*(Recovered)
SearchApplicationGetUninstallKey.ps1

Untitled27.ps1¥(Recovered) get-azpolicies.ps1
I Untitled58.ps1*(Recovered) Untitled64.ps1*(Recovered)

Untitled69.ps1"(Recovered) MyMathModule.psm?1

New-AzADUser -DisplayName SdisplayName -UserPrincipalName SuserPrincipalName -Password Spassword

‘v1.0/$metadatafuser,

Ln 116 Col 25

Untitled5.ps1*(Recovered)
Untitled13.ps1*(Recovered)
Untitled33.ps1*(Recovered)

Untitled3.ps1*(Recovered)

Untitled70.ps1*

100%

The Connect-AzAccount cmdlet is used to authenticate with your Azure account before

running any Azure-related cmdlets.

www.alexandrumarin.com

238

https://learn.microsoft.com/en-us/powershell/module/az.accounts/connect-azaccount?view=azps-10.2.0
http://www.alexandrumarin.com

"B Admin
File Edit View Tools Debug Add-ons Help
A~ = IS O x » | = &

o O B B
‘ Untitled 1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3 ps1*(Recovered) | copyfolder.ps1 | Untitled4.ps1*(Recovered) Untitled5.ps1*(Recovered) |
| our account

‘ Untitled6.ps1"(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps17(Recovere Y |

| Untitled16,pst*(Recovered) AppFinder.ps Untitled21.ps1*(Recoverad) | @

[Untitied40 psT*(Recovered) Untitled46.ps1*{Recovered) Untitled52,psT*(Recovered) Microsoft Azure |

‘ Untitled6.ps1*(Recovered) Untitled67.ps1*(Recovered) Untitled68.ps1*(Recovered) K |
1 # Sign in to your Azure account (if not already signed in)
2 Connect-AzAccount u .
3 me Microsoft
4 # Define user details
5 $displayName = "John Doe"
6 SuserPrincipalName = “john.doe@yourdomain. onmicrosoft.com” &« alex‘mannw
7 $password = ConvertTo-SecureString "Passwordl123!™ -AsPlainText -Force
8
9 # Create the new user in Azure AD
10 New-AzADUser -DisplayName SdisplayName -UserPrincipalName SuserPrincipal Enter password
11

Password
Forgot my password

PS C:\WINDOWS\system32> # Sign in to your Azure account (if not already signed

Connect-AzAccount

Define user

$displayName = "]

$userPrincipalNams "john. doe@yourdomain. onmicrosoft. com”

$password = ConvertTo-SecureString "Password123!™ -AsPlainText -Force

Create the new user in Azure AD

New-AzADUser -DisplayName $displayName -UserPrincipalName $userPrincipalName -]

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. 100%

L i

www.alexandrumarin.com 239

http://www.alexandrumarin.com

Azure PowerShell Module

The Azure PowerShell module is a powerful tool for managing Azure resources and services
from within your PowerShell environment. It includes a comprehensive set of cmdlets and
functions for interacting with Azure subscriptions, creating and managing resources,
automating tasks, and streamlining cloud management workflows. This chapter will introduce
you to the Azure PowerShell module, explain its benefits, and walk you through the
installation and usage processes.

Understanding the Azure PowerShell Module

The Azure PowerShell module is a set of cmdlets designed specifically to interact with the
Azure platform. These cmdlets are built on top of the Azure REST APIs, allowing you to
manage your Azure resources programmatically in a convenient and efficient manner. You
can use Azure PowerShell to do a variety of things, including creating virtual machines,
managing storage accounts, deploying web apps, configuring network settings, and much
more.

Installing the Azure PowerShell Module

Before you can start using the Azure PowerShell module, you need to install it on your local
machine. The installation process involves a simple one-time setup to ensure you have
access to the latest Azure cmdlets. Here's how you can install the Azure PowerShell module:

Open an elevated PowerShell session and run the following command:
Install-Module -Name Az -AllowClobber -Force

www.alexandrumarin.com 240

http://www.alexandrumarin.com

‘_-‘ 2 Administrator: Windows Powt X + o~

PS C:\Users\User> Install-Module

Installing package 'Az'
Installing dependent package 'Az.Advisor'
[o

Installing package 'Az.Advisor’

[

The Install-Module cmdlet downloads the Azure PowerShell module from the PowerShell
Gallery and installs it on your machine. The -AllowClobber parameter is used to allow
installation alongside any existing Azure modules, and -Force ensures the installation
proceeds without prompting for confirmation.

Updating the Azure PowerShell Module

New features and enhancements to the Azure PowerShell module are added on a regular
basis as the Azure platform evolves. To take advantage of the most recent capabilities and
bug fixes, you must keep your Azure PowerShell module up to date. Use the following
command to update the Azure PowerShell module:

Update-Module -Name Az

www.alexandrumarin.com 241

https://learn.microsoft.com/en-us/powershell/module/powershellget/install-module?view=powershellget-2.x
http://www.alexandrumarin.com

‘_-‘ 22 Administrator: Windows Powt X S R

PS C:\Users\User> Update-Module
PS C:\Users\User> |

The Update-Module cmdlet retrieves the latest version of the Azure PowerShell module from
the PowerShell Gallery and installs it, replacing any older versions.

Exploring Azure Cmdlets and Functions

Once the Azure PowerShell module is installed, you can explore the wealth of cmdlets and
functions it offers.

When you begin exploring the Azure PowerShell module, you'll notice a plethora of cmdlets
and functions designed to interact with various Azure services and resources. These
cmdlets are organized logically to help you find the ones that are relevant to your specific
tasks and goals. Let's delve deeper into the idea of exploring Azure cmdlets and functions
and learning how to use them effectively.

The Azure PowerShell module is intended to provide cmdlets that are closely related to
different Azure services. If you want to work with virtual machines, for example, you can
expect to find a set of cmdlets prefixed with "AzVM." Similarly, cmdlets for managing storage
accounts, networking resources, web apps, databases, and other services are available, with
intuitive prefixes associated with each service.

By adhering to this naming convention, you can quickly navigate through the available
cmdlets and identify the ones you require based on the Azure service you are working with.
When managing specific Azure resources, this organization ensures a more focused and
efficient experience.

While each Azure cmdlet may have its own set of parameters tailored to the task at hand,

www.alexandrumarin.com 242

https://learn.microsoft.com/en-us/powershell/module/powershellget/update-module?view=powershellget-2.x
http://www.alexandrumarin.com

many cmdlets share common parameters, making them easier to learn and use. For
example, you'll frequently find parameters for specifying the Azure resource group, location,
and other settings that are shared by multiple resources.

Furthermore, many Azure cmdlets return output in a standardized format, such as
PowerShell objects, which makes working with the data returned by the cmdlets easier.
PowerShell techniques can be used to filter, sort, and process the output, allowing you to
create more sophisticated automation and reporting scripts.

Azure PowerShell cmdlets are intended to combine multiple operations into a single
command. This abstraction enables you to complete tasks that would otherwise necessitate
multiple steps and API calls with a single cmdlet. For example, creating a virtual machine
necessitates several configuration and resource provisioning steps, but the New-AzVM
cmdlet handles all of this behind the scenes, greatly simplifying the process.

Practical examples are one of the best ways to learn about Azure cmdlets. You can use
PowerShell's tab completion and Get-Help cmdlet to discover available cmdlets and their
parameters as you work with different Azure services and resources. Furthermore, online
resources, official documentation, and Azure PowerShell community forums can provide
useful insights and real-world scenarios that show how to use specific cmdlets effectively.

Microsoft actively maintains and updates the Azure PowerShell module. New features,
enhancements, and bug fixes are introduced on a regular basis, ensuring that you have
access to the most up-to-date capabilities for managing Azure resources. As you explore
Azure cmdlets, consider regularly updating your Azure PowerShell module to take advantage
of the most recent features.

Here are some examples of Azure cmdlets:

Get-AzResourceGroup: Retrieves information about Azure resource groups.
New-AzResourceGroup: Creates a new Azure resource group.
Set-AzVMOSDisk: Modifies the OS disk properties of an Azure virtual machine.
New-AzVM: Creates a new Azure virtual machine.

Get-AzVM: Retrieves information about Azure virtual machines.
New-AzSqlServer: Creates a new Azure SQL Server.

Get-AzSqlServer: Retrieves information about Azure SQL Servers.
New-AzWebApp: Creates a new Azure Web App (App Service).

Get-AzWebApp: Retrieves information about Azure Web Apps.
New-AzStorageAccount: Creates a new Azure Storage Account.
Get-AzStorageAccount: Retrieves information about Azure Storage Accounts.
New-AzNetworkSecurityGroup: Creates a new Azure Network Security Group.
Get-AzNetworkSecurityGroup: Retrieves information about Azure Network Security
Groups.

New-AzVirtualNetwork: Creates a new Azure Virtual Network.
Get-AzVirtualNetwork: Retrieves information about Azure Virtual Networks.

www.alexandrumarin.com 243

https://learn.microsoft.com/en-us/powershell/module/az.compute/new-azvm?view=azps-10.2.0
https://learn.microsoft.com/en-us/powershell/module/az.resources/get-azresourcegroup?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.resources/new-azresourcegroup?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.compute/set-azvmosdisk?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.compute/new-azvm?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.compute/get-azvm?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.sql/new-azsqlserver?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.sql/get-azsqlserver?view=azps-10.1.0&viewFallbackFrom=azps-9.1.0
https://learn.microsoft.com/en-us/powershell/module/az.websites/new-azwebapp?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.websites/get-azwebapp?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.storage/new-azstorageaccount?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.storage/get-azstorageaccount?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.network/new-aznetworksecuritygroup?view=azps-10.1.0&viewFallbackFrom=azps-9.2.0
https://learn.microsoft.com/en-us/powershell/module/az.network/get-aznetworksecuritygroup?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.network/new-azvirtualnetwork?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.network/get-azvirtualnetwork?view=azps-10.1.0
http://www.alexandrumarin.com

These are just a few examples, and there are many more cmdlets available for different
Azure services, including networking, databases, security, and more.

You can use the following PowerShell commands to get a list of all available Azure cmdlets
within a specific module, or cmdlets that follow a specific search pattern:

Import the Azure PowerShell module
Import-Module Az

List all cmdlets in the Az.Accounts module
Get-Command -Module Az.Accounts

List all cmdlets that contain VirtualNetwork in their name
Get-Command -Name *VirtualNetwork*'

List all cmdlets that contain VM in their name in the Az.Compute module
Get-Command -Module Az.Compute -Name *VM*'

Alternatively, if you don’t have many modules installed, you can simply use the
Get-Command without any parameters and this will output all the available cmdlets, version
and source of the cmdlet:

(J B Administrator: Windows Pows X + >

PS C:\Users\User> Get-Command

CommandType

Name

Add-AdlAnalyticsDataSource
Add-AdlAnalyticsFirewallRule
Add-AdlStoreFirewallRule
Add-AdlStoreItemContent
Add-AdlStoreTrustedIdProvider
Add-AdlStoreVirtualNetworkRule
Add-AppPackage

Add-AppPackageVolume
Add-AppProvisionedPackage
Add-ASRReplicationProtectedItemDisk
Add-AzAccount
Add-AzApplicationGatewayBackendHttpSettings
Add-AzIotHubDCL

Add-AzIotHubEHCG

Add-AzIotHubMsgEnrich
Add-ProvisionedAppPackage
Add-ProvisionedAppSharedPackageContainer
Add-ProvisionedAppxPackage
Add-ProvisioningPackage
Add-TrustedProvisioningCertificate
Apply-WindowsUnattend
Clear-AzSynapseSqlAdvancedThreatProtectionSetting

Clear-AzSynapseSqlPoolAdvancedThreatProtections...
Clear-AzSynapseSqlPoolVulnerabilityAssessmentSe.. .

Clear-AzSynapseSqlVulnerabilityAssessmentSetting
Disable-AzStorageSoftDelete

www.alexandrumarin.com

Version

U W WWWWWWWWWNNNONGD WNNRRERRRRER

Source

.DatalLakeAnalytics
.DatalLakeAnalytics
.DatalakeStore
.DatalLakeStore
.DatalLakeStore
.DatalakeStore

Appx

Appx

Dism

Az.RecoveryServices

Az.Accounts

Az .Network

Az.IotHub

Az.IotHub

Az.IotHub

Dism

Dism

Dism

Provisioning

Provisioning

Dism

Az.Synapse

Az.Synapse

Az.Synapse

Az.Synapse

Az.Storage

244

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-command?view=powershell-7.3
http://www.alexandrumarin.com

Authenticating to Azure

Authenticating to Azure is a critical step in using PowerShell to interact with Azure resources
and services. To ensure secure access to your resources, Azure offers several
authentication methods. This chapter will go over various authentication methods and how to
use them in PowerShell scripts.

Connecting to Azure with Azure AD Account

Accounts in Azure Active Directory (Azure AD) are a popular way to authenticate and
manage access to Azure resources. You can interact with Azure resources using your user
identity or an identity assigned to you if you have an Azure AD account.

The Connect-AzAccount cmdlet can be used to connect to Azure using an Azure AD
account. Here's an example:

Prompt the user to log in and connect to Azure
Connect-AzAccount

When you run the cmdlet, you will see a pop-up window asking you to sign in with your Azure
AD account credentials. Your session will be authenticated after successful authentication,
and you will be able to manage Azure resources using PowerShell cmdlets.

a
File Edit View Tools Debug Add-ons Help
U@ -3 & 0o > # B | *® |8 3500, E.
[Untitied1,psT"(Recovered) UntitledZ.ps1*(Recovered) Untitled3.ps1"(Recovered) | copyiolderpsi | Untitled4.ps1*(Recovered) Untitied.ps1"(Recovered) |
[Untitled.psT*(Recovered) Untitied.ps1"(Recovered) Untitled8.ps1*(Recovers |
[Untitied16.ps17(Recovered) AppFinder.ps] Untitled21.ps1"(Recovered) | @
| Untitled40 ps17(Recovered) Untitled46.ps1*(Recavered) Untitled52.ps1*(Recovered) M ICrOSOft Azure |
| Untitled66.ps17(Recovered) Untitled67.psT"(Recovered) Untitled68.ps1"(Recovered) 3l

1 Simiimbiiailimdz ur e account (if not already signed in)

2 T

3 m: Microsoft

4 # Define user details

5 SdisplayName = "John Doe”

& SuserPrincipalName = "john.doe@yourdomain. onmicrosoft. co <« a\ex‘mann(m

7 Spassword = ConvertTo-5ecureString "Password1231" -AsPlainText -Fol

8

9 # Create the new user in Azure AD

10 New-AzADUser -DisplayName SdisplayName -UserPrincipalName SuserPrincipal Enter pEISSWOTd

1

Password

Forgot my passward

AD
New-AzADUser -DisplayName $displayName -UserPrincipalName $userPrincipalName -]

Running script/ selection. Press Ctrl+Break to stop. Press Ctrl~B to break into debugger. 100%

www.alexandrumarin.com 245

http://www.alexandrumarin.com

Connecting to Azure with Service Principal

Service Principal is another way to authenticate to Azure, particularly for non-interactive
scripts or background applications. A Service Principal is similar to a "service account" in
that it represents an application or service and can be granted access to resources.

To connect to Azure via a Service Principal, first create the Service Principal in Azure AD and
obtain the Application ID (Client ID) and Secret Key (Client Secret). Then, with the
-ServicePrincipal parameter, run the Connect-AzAccount cmdlet.

As a step by step guide, these is what you need to do:

First, you need to sign in into a PowerShell session using an admin account:

Connect-AzureAD

The Connect-AzureAD cmdlet is not available within the AZ module. For this, the AzureAD
module must be installed separately.

We'll use a self signed certificate for this example, so let's create one. You'll want to replace
the <password> string in the below example with a password of your choice, this is the
password that is used to create the certificate file.

Spwd = "<password>"

SnotAfter = (Get-Date).AddMonths(6) # Valid for 6 months

Sthumb = (New-SelfSignedCertificate -DnsName "drumkit.onmicrosoft.com"
-CertStoreLocation "cert:\LocalMachine\My" -KeyExportPolicy Exportable -Provider
"Microsoft Enhanced RSA and AES Cryptographic Provider" -NotAfter

SnotAfter). Thumbprint

Spwd = ConvertTo-SecureString -String Spwd -Force -AsPlainText
Export-PfxCertificate -cert "cert:\localmachine\my\Sthumb" -FilePath
c:\temp\examplecert.pfx -Password Spwd

Now that we have a certificate file, we'll need to load it so we can assign it to a new
application we're creating:

Scert = New-Object
System.Security.Cryptography.X509Certificates.X509Certificate("C:\temp\examplecert.pfx
", Spwd)

SkeyValue = [System.Convert]::ToBase64String(Scert.GetRawCertData())

www.alexandrumarin.com 246

https://learn.microsoft.com/en-us/powershell/module/az.accounts/connect-azaccount?view=azps-10.2.0
http://www.alexandrumarin.com

Next step is to create a new application and assign the certificate we created as a key
credential:

Sapplication = New-AzureADApplication -DisplayName "test123" -IdentifierUris
"https://rodejo2177668"

New-AzureADApplicationKeyCredential -Objectld Sapplication.Objectld
-CustomKeyldentifier "Test123" -Type AsymmetricX509Cert -Usage Verify -Value
SkeyValue -EndDate SnotAfter

To use the application to sign in into your directory with PowerShell you'll need to create a
new service principal for this application:

Ssp=New-AzureADServicePrincipal -Appld Sapplication.Appld

We now have the ability to set the exact access rights this service principal has in your
directory. In this example, we'll assign the access rights of the Directory Readers role in
Azure AD:

Add-AzureADDirectoryRoleMember -Objectld (Get-AzureADDirectoryRole | where-object
{S_.DisplayName -eq "Directory Readers"}).Objectid -RefObjectld Ssp.Objectld

We can now sign in to the directory using the new service principal.

If you are running all these commands in one script, as you probably would do when trying
this out, please remember that Azure AD requires some time to sync all the information
you just entered through all of its components. In that case, add a Sleep cmdlet call here,
this will make the script processing pause for 5 seconds/

To sign in you will need to find the ObjectID of the tenant you want to sign in to:

Stenant=Get-AzureADTenantDetail

Now you can sign in into your directory Azure AD PowerShell with your Service Principal and
Certificate

Connect-AzureAD -Tenantld Stenant.Objectld -Applicationld SApplication.Appld
-CertificateThu

www.alexandrumarin.com 247

http://www.alexandrumarin.com

By providing the required parameters, your PowerShell script can authenticate and manage
Azure resources programmatically using the Service Principal.

Using Managed Service Identity (MSI) for Authentication

MSI (Managed Service Identity) is a feature that provides an automatically managed identity
for Azure resources such as Virtual Machines and Azure Functions. You can securely
authenticate to Azure resources using MSI without explicitly handling credentials.

You do not need to provide any credentials explicitly when using MSI in PowerShell scripts.
The script can connect to Azure directly using the Connect-AzAccount cmdlet, and the
authentication will be handled by the MSI associated with the running resource.

Connect using Managed Service Identity (no credentials needed)
Connect-AzAccount

Using MSI simplifies authentication management and enhances security, as there are no
credentials stored or exposed in your scripts.

www.alexandrumarin.com 248

http://www.alexandrumarin.com

Managing Azure Resources with PowerShell

Microsoft Azure has emerged as one of the leading cloud platforms in the cloud computing
era, providing a wide range of services for developing, deploying, and managing applications
and infrastructure. PowerShell, a powerful and flexible scripting language, integrates
seamlessly with Azure, providing extensive capabilities for efficiently managing Azure
resources.

Before diving into Azure resource management with PowerShell, make sure you have the
following prerequisites in place:

e Azure Account: You need an active Azure subscription and an Azure AD account with
the necessary permissions to manage resources.

e PowerShell: Install PowerShell on your local machine or the environment where you
intend to run Azure PowerShell commands. Ensure you have the latest version of
PowerShell installed.

e Azure PowerShell Module: We touched this topic in the previous chapter, make sure
to install the latest version of the AZ module

e Azure CLI (Optional): While not strictly required, having the Azure Command-Line
Interface (CLI) installed can be beneficial as it provides additional features and
functionality when working with Azure resources.

Creating and Managing Azure Resource Groups

Azure Resource Groups are logical containers that aid in the organization and management
of Azure resources. They enable you to organize related resources for easier management,
resource tagging, and access control. PowerShell makes it simple to create, list, update, and
delete Azure Resource Groups.

Let's go through some examples of how to work with Azure Resource Groups using
PowerShell:

Create a New Resource Group:

SresourceGroupName = "MyResourceGroup"
Slocation = "East US"

Connect-AzAccount

New-AzResourceGroup -Name SresourceGroupName -Location Slocation

www.alexandrumarin.com 249

http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE
File Edit View JTools Debug Add-ons Help
=~ B » [B = | &

Untitled1.ps1*(Recovered)

Untitled2.ps1*(Recovered) Untitled3 ps1* (Recovered)

Untitled6 ps1*Recovered) Untitled7.psT"{Recovered) Untitled8 ps1*(Recovered)

Untitled16,ps1(Recovered) AppFinderpsl Untitled21,ps1"(Recovered)

Untitled0.ps1*(Recovered) Untitied6.ps1*(Recovered) Untitled52.ps1*(Recovered)

Untitled69.ps1™(Recovered) Untitled75.ps1*(Recovered) Untitled76.ps1*(Recovered)

MyMathModule,psm1

Sresour ceGroupName
$location = "East US"

Untitled79.ps1*(Recovered)

MyResour ceGroup”

Untitled80.ps1*(Recovered)

Connect-AzAccount

New-AzResourceGroup -Name SresourceGroupName -Location $location

SR

Sresour ceGroupName

Connect-AzAccount

New-AzResourceGroup -Name $resourceGroupName -Location $location

Account SubscriptionName TenantTd

alex.marin Microsoft Partner Network
Resour ceGroupName
Locatio

ProvisioningState

: MyResour ceGroup
tus
Succeeded
Tags
TagsTable
ResourceId
ManagedBy

/subscriptions/

’;__

copyfolder.psl

Untitled27.ps1*(Recovered)

.

Untitled4.ps1*(Recovered)

SearchApplicationGetUninstallKey.ps1

get-azpolicies.ps1
Untitled58.ps1*(Recovered)
Untitled77.ps 1" (Recovered)

Untitled&1.ps1*(Recovered)

Environment

AzureCloud

/resour ceGroups /MyResour ceGroup

UntitledS.ps1*(Recovered)
Untitled13.ps1*(Recovered)
Untitled33.ps1*(Recovered)
Untitleds4.ps1*(Recovered)
Untitled78.ps1*(Recovered)

Untitled82,ps1*

Commands X

Modules: | All

Name:

A
Ade-AppProvisioredsharedPackageContainer
Add-AppSharedPackageCantainer
Add-AppyClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-Appxvolume
Ada-AzADAppPermission
Add-AzADAppPermission
Add-AzADGroupMember
Add-AzADGroupMember
Ada-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup

yAuthenticationCertificate
yBackendAddres:
BackendHittpSetting
asetting

CustomError

ool

2yBack

wayFrontendiPConfig

tepListener

tiplListenerCustor
Configuration

teLinkConfiguration
robeConfig
Add-AzApplicationGa

ByRedirectConfiguration

Ln 24 Col 25

100%

@D
C @ o

)\ Resource groups - Microsoft Az X -
portal.azure.com,
rosoft Azure

P search resources, services, and docs (G+/)

Resource aroups

Manage view Refresh Export to CSV Open query |

cription equals all Location equals all T Add filter

iowing 110 5 of 5 recore

[Name ©

subseription 7

f we navigate to the Resource Groups in Azure, we can see our newly created group:

No grouping

Location Ty

North Europe

West Europe

EastUS

EastUS

EastUS

www.alexandrumarin.com

250

https://portal.azure.com/#view/HubsExtension/BrowseResourceGroups
http://www.alexandrumarin.com

List Resource Groups:

Connect-AzAccount

Get-AzResourceGroup

¥ Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help

il = B » [= | 8|38 oo R

| Untitied ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3,ps1*(Recovered) copyfolder.ps1 Untitled4.ps1*(Recovered) Untitled5.ps1*(Recovered)
| Untitied6,ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered)

| Untitied16.ps1+(Recovered) AppFinderps1 Untitled21 psi*(Recavered) | Untitled27.ps1*(Recovered) get-azpolicies.ps Untitled33.ps1*(Recovered)
| Untitied40.ps1=(Recovered) Untitled46.psT*(Recovered) Untitled52,ps1*(Recovered) Untitled58.ps1*(Recovered) Untitled64.ps1*(Recovered)

| Untitied60.pst*(Recovered) Untitied75.ps1*(Recovered) Untitled76.ps1*(Recovered) UntitledT7.ps1*(Recovered) Untitled78.ps1*(Recovered)

| MyMathiodule.psm1 Untitled79.ps 1 (Recovered) Untitled80.ps1*(Recovered) Untitled81.ps1*(Recovered) Untitled82,ps1*

Connect-AzAccount

1
2
3 Get-AzResourceGroup
4

ProvisioningState : Succeeded

Tags

TagsTable

Resour celd ubscriptions, /resourceGroups/
ManagedBy

ResourceGroupName : AzureCodeSigning

Location northeurope

ProvisioningState d

Tags

TagsTable

Resourceld ubscriptions ‘resour ceGroup:
ManagedBy

ResourceGroupName : MyResour ceGroup
eastus
succeeded

Tags

TagsTable

ResourceId ubscriptions /resour ceGroups MyResour ceGroup
ManagedBy

- o x
Commands X X
Modules: | All o
Name:
a

Add-AppProvisienedSharedPackageContainer
Adg-AppSharedPackageContainer
‘Add-AppvClientConnectionGroup
Adg-AppyClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Ade-Appxiolume

Add-AzADAppPermission
Ada-AzADAppPermission
Add-AzADGroupMember
Ada-AzADGroupMember
Add-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApToPraduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
ayAuthenticationCertificate.

yBackendAddressPocl
stewsyBackendHitipSetting
stewsyBackendSetting

ayFrantendiPConfig
yFrontendPort
Add-AzApplicationGatewayHttpListener
Add-AzApplicationGatewayHttpListenerCustomErmor
Add-AzApplicationGatewaylPConfiguration
Add-AzApplicationGatewayListenar
Add-AzApplicationGatewayPrivateLinkConfiguration
Add-AzApplicationGa
Add-AzApplicationGatewayRedireciConfiguration

ayProbeConfig

Ln 80 Col 25 100%

Update Resource Group Tags:

SresourceGroupName = "MyResourceGroup"
Slocation = "East US"

Connect-AzAccount

Project = "YearEnd" }

Set-AzResourceGroup -Name SresourceGroupName -Tag @{ Department = "Finance";

www.alexandrumarin.com

251

http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE
File Edit View JTools Debug Add-ons Help

e |4 5PN b

Untitled1.ps1*(Recovered)

= | 8|5 oo

Untitled3 ps1* (Recovered)

.

Untitled2.ps1*(Recovered) copyfolder.psl Untitled4.ps1*(Recovered)

Untitled6 ps1*Recovered) Untitled7.psT"{Recovered) Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1

Untitled16,ps1(Recovered) AppFinderpsl Untitied21,ps1-{Recovered) | Untitied27.ps1*(Recovered) get-azpolicies.ps1

Untitled0.ps1*(Recovered) Untitied6.ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled58.ps1*(Recovered)

Untitled69.ps1™(Recovered) Untitled75.ps1*(Recovered) Untitled76.ps1*(Recovered) Untitled77.ps1*(Recovered)

MyMathModule,psm1 Untitled79.ps1*(Recovered)

SresourceGroupName = "MyResourceGroup”
$location = "East US"

Untitled80.ps1*(Recovered) Untitled&1.ps1*(Recovered)

Connect-AzAccount

Set-AzResourceGroup -Name SresourceGroupName -Tag @{ Department = "Finance”; Project = “YearEnd” }

SR

e \MLNDUm 2y 3 e,
$location East US”
Connect-AzAccount

Set-AzResourceGroup -Name $resourceGroupName -Tag @{ Department = Project = "YearEnd" }

Account SubscriptionName Tenant1d Environment

alex.marine Microsoft Partner Network szurecloud
ResourceGroupName : MyResourceGroup

Location eastus

ProvisioningState : Succeeded

{Project, Department}

Tags
TagsTable

Name value

Project YearEnd
Department Finance

Resourceld
ManagedBy

/subscriptions, ‘resour ceGroups/MyResour ceGroup

UntitledS.ps1*(Recovered)
Untitled13.ps1*(Recovered)
Untitled33.ps1*(Recovered)
Untitleds4.ps1*(Recovered)
Untitled78.ps1*(Recovered)

Untitled82,ps1*

= o X
Commands X X
Modules: | All k2
Name:
A

Add-AppPravisicnedSharedPackageContainer
Add-AppSharedPackageCantainer
Add-AppyClientConnectionGroup
Add-AppvClientPackage

Add-AppvPublishingServer

Add-AppxPackage

Add-AppxProvisionedPackage

Add-Appxvolume

Ada-AzADAppPermission

Add-AzADAppPermission

Add-AzADGroupMember

Add-AzADGroupMember
Ada-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplicationGatewayAuthenticationCertificate
Ade-AzApplicationGatewayBackendAddressPool
Add-AzApplicationGatewayBackendHitpSetting
Add-AzApplicationGatewsyBackendSetting
Add-AzApplicationGatewayCustomError
‘Ada-AzApplicationGatewayFrantendiPConfig
Add-AzApplicationGatewayFrontendPort
Add-AzApplicationGatewayHttpListener
Adg-AzApplicationGatewayHitpListenerCustomErmor

Add-AzApplicationGatewaylPConfiguration
Add-AzApplicationGatewayListener
Add-AzApplicationGatewayPrivateLinkConfiguration
Add-AzApplicationGatewayProbeConfig
Ade-AzApplicationGatewayRedirectConfiguration

Ln 108 Col 25 100%

Remove a Resource Group:

SresourceGroupName = "MyResourceGroup"

Connect-AzAccount

Remove-AzResourceGroup -Name SresourceGroupName -Force

www.alexandrumarin.com

252

http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE - o X

BooisE.

copyfolder.psl Untitled4.ps1*(Recovered)

File Edit View JTools Debug Add-ons Help
=~ B » [B = | &

Untitled1.ps1*(Recovered)

Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) Untitled5.ps1*(Recovered) Commands X x

Untitled6 ps1*Recovered) Untitled7.psT"{Recovered) Untitled8 ps1*(Recovered)

MyMathModule,psm1

Untitled79.ps1*(Recovered)

Untitled80.ps1*(Recovered)

Untitled&1.ps1*(Recovered)

Untitled82,ps1*

Ade-AppProvisioredsharedPackageContainer
Add-AppSharedPackageContainer

SearchApplicationGetUninstallKey.ps1 Untitled13.ps1"(Recovered) Moduies: | All v
Untitled16,ps1(Recovered) AppFinderpsl Untitled21,ps1"(Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) | —

Untitled0.ps1*(Recovered) Untitied6.ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled58.ps1*(Recovered) Untitleds4.ps1*(Recovered)

Untitled69.ps1*(Recovered) Untitled75.psT*(Recovered) Untitled76.ps1* (Recovered) Untitled77.ps 1" (Recovered) Untitled78.ps1*(Recovered) "

1 $resourceGroupName = “MyResourceGroup" Ada-AppvClientConnectionGroup

2 Add-AppvCiientPackage
3 Connect-AzAccount
1 Add-AppvPublishingServer
5 Remove-AzResourceGroup -Name $resourceGroupName -Force Add-AppxPackage
Ade-AppxProvisionedPackage
Add-Appxvolume
Ada-AzADAppPermission
Add-AzADAppPermission
Add-AzADGroupMember
Add-AzADGroupMember
Ada-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
e Add-AzApiManagementApiToProduct
Provisieningst Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion

Succeeded

Tags {Project, Department}

TagsTable
Name value Add-AzApiManagementUserToGroup

yAuthenticationCertificate
yBackendAddres:
BackendHittpSetting
asetting

CustomError

ool

2yBack

wayFrontendIPConfig
)) FrontendPort
PS5 C:\WINDOWS\system32> $resourceGroupName tepListener

Connect-AzAccount

ttpListenerCustom

Configuration
Remove-AzResourceGroup —Name $resourceGroupName -Force g

yUistener
Account

Environment

SubscriptionName telinkConfiguration

TenantId

robeConfig

alex.mariné izureCloud

True

Microsoft Partner Network

Add-AzApplicationGa

ByRedirectConfiguration

Ln 121 Col 25 100%

If we go back on Azure and check our resource group list, we can see that the previously
created resource group is now gone:

A D
C @

\ Resource groups - Microsoft Az X+
portal.azure.com

smaring

Microsoft Azure -
CAPHYON SRL (CAPHYON.ONMI_..

P search resources, services, and docs (G+/)

Resource groups

Manage view Refresh Export to CSV Open query |

cription equals all Location equals all T Add filter

Showing 1to 4 of 4 records. | [== tistview

[] Name * Subscription Ty Location Ty
North Europe
West Europe
East US

EastUS

www.alexandrumarin.com 253

http://www.alexandrumarin.com

Working with Azure Virtual Machines

Azure Virtual Machines (VMs) are compute resources that are available on demand,
scalable, and customizable, allowing you to run virtualized applications. PowerShell makes it
simple to create, manage, and configure Azure virtual machines.

Here are some examples of how to work with Azure VMs using PowerShell:

Create a New Virtual Machine

SvmName = "MyVM"

SvmSize = "Standard_DS2_v2"

SadminUsername = "azureuser"

SresourceGroupName = "MyResourceGroup"

SadminPassword = ConvertTo-SecureString "P@sswO0rd123!" -AsPlainText -Force
Slocation = "eastus”

Connect-AzAccount

New-AzVm -ResourceGroupName SresourceGroupName -Name SvmName -Location
Slocation
-VirtualNetworkName "MyVNet" -SubnetName "MySubnet""
-SecurityGroupName "MyNetworkSecurityGroup"
-PubliclpAddressName "MyPubliclP" -OpenPorts 3389 °
-ImageName "Win2019Datacenter" -Size SvmSize
-Credential (New-Object PSCredential SadminUsername, SadminPassword)

The script begins by defining variables that will be used to configure the virtual machine. We
have variables like SymName, SvmSize, SadminUsername, and SadminPassword, for
example. We've also set the Slocation variable to "eastus," indicating that the virtual machine
will be created in the Azure region "East US." To manage Azure resources, we first use the
Connect-AzAccount cmdlet to connect to our Azure account.

The primary task of creating the virtual machine is done using the New-AzVm cmdlet. We
pass various parameters to this cmdlet in order to configure the VM to our specifications.
For example, to configure the networking aspects of the virtual machine, such as access and
security, we use parameters such as -ResourceGroupName, -Name, -Location,
-VirtualNetworkName, -SubnetName, -SecurityGroupName, and -PubliclpAddressName.

We also specify the virtual machine's image with the -lmageName parameter, which in this
case is "Win2019Datacenter" to use Windows Server 2019 Datacenter edition. In our case,
the -Size parameter specifies the size of the virtual machine, which is set to "Standard DS2
v2."

www.alexandrumarin.com 254

https://learn.microsoft.com/en-us/powershell/module/az.compute/new-azvm?view=azps-10.1.0
http://www.alexandrumarin.com

Finally, we use the -Credential parameter to provide the administrator credentials for the
virtual machine, which are stored in the PSCredential object created using the
SadminUsername and SadminPassword variables.

With this script, a new virtual machine with the defined settings will be created in the "East
US" region, ready for use with the specified administrator credentials.

This takes some time and a progress bar is shown inside the PowerShell ISE:

B administrator: Windows PowerShell ISE - o X
File Edit View Tools Debug Add-ons Help

I~ = I o x s B % |@|Boole@.

| Untitied ps1*{Recoversd) Untitled2.ps1*(Recovered) Untitled3 ps1*(Recovered) copyfolder.ps1 Untitledd ps1*{Recovered) Untitled5 ps1*{Recovered) Commands X x
| Untitied6,ps1*(Recovered) Untitled7.ps1"(Recovered) Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) wosuies: | All o

| Untitied16.pst*(Recovered) AppFinderpsi Untitied21.psi*{Recovered) | Untitied27.ps1*(Recovered) get-azpolicies.psi Untitled32.ps1*(Recovered) omer

| Untitied40.ps1+{Recovered) Untitied46.ps1*(Recovered) Untitled52,ps1*(Recovered) Untitled58.ps 1 (Recovered) Untitled64.ps1*(Recovered)

| Untitied69.pst=(Recovered) Untitled75.ps1*(Recovered) Untitled76.ps1*(Recovered) Untitled77.ps1*(Recovered) Untitled78.ps1*(Recovered) ®

Add-AppProvisienedSharedPackageContainer
| MyMathModule psm1 Untitled79.ps 1*(Recovered) Untitled80.ps1*(Recovered) Untitled81.ps1*(Recovered) Untitled82ps1* X Adc-AppSharedPackageContainer
: Adc-AppvCliertConnectionGroun

; Ade-AppvClientPackage

4 CDIWEr‘tTU secureString [I -2s712inText -Force Add-AppvPublishingServer
5 $location = "eastus" Add-AppxPackage

s -
7 Connect-AzAccount Adc-AppxProvisionedPackage
8 Add-AppxVolume

9 New-AzVm -ResourceGroupName $resourceGroupName -Name SvmName -Location $location * i
10 -VirtualNetuorkName "MyVNet” —SubnetName 'MySubnet’ Add-AzADAppPermission
11 -SecurityGroupName “MyNetworkSecurityGroup” Add-AzADAppPermission
12 -PublicIpAddressName "MyPublicIP” -OpenPorts 3389 Ada-AZADGroUpMember
13 -InageName "Winz0l9Datacenter’ -Size Svmsize

14 ~Credential (New-Object PSCredential SadminUsername, SadminPassword) Add-AzADGroupMember

Add-AzAnzlysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApToPraduct

Creating Azure resources, Add-AzApiManagementProductToGroup
2% -, Creating publiclPAddresses/MyPubliclP, networkSecurityGroups/MyNetworkSecurityGroup, virtualNetworiks/ MyVNet.. Ada-AzApiManagementRegion
. Add-AzApiManagementUserToGroup
Add-AzApplicationGatewayAuthenticationCertificate

Connect-AzAccount Add-AzApplicationGatewayBackendAddressPoel

- - Bz dHttpSetti
New-AzVim —Resour ceGroupName our ceGroupName | vmName -Location $location ackenarittosetting
SubnetName bnet” Add-AzApplicationGa
ecurityGroup” R Ada-AzApplicationGat
IP" —OpenPorts 3389
019Datacenter” -Size SvmSize
~Credential (N:w—Uhj-ct PSCredential SadminUsername, $admwinPassword) Ado-AzApplicationGat

ayBackendSetting

n th

HttpListenerCustomérror
vaylPConfiguration

Listener
Ado-AzapplicationGatewsyPrivateLinkConfiguration
vayProbeConfig

RedirectConfiguration

Running script / selection. Press Ctrl+Break to stop. Press Ctrl+B to break into debugger. Ln 57 Col 102 100%

Keep in mind that during the creation of a vm, a virtual network is also created

After a few minutes you should be able to have the machine created:

www.alexandrumarin.com 255

http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE

= o X

File Edit View Jools Debug Add-ons Help
I~ = I B » [B =8| 5o0oo0 &0.
Untitled1.ps1#{Recovered) Untitled?.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd. ps1#(Recovered) Untitleds.ps1*(Recovered) Commands X X
Untitled6.ps1*(Recovered) Untitled7.psT1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1"(Recovered) Modules: | All v
Untitled16,p51"(Recovered) AppFinderps1 Untitled21,ps1*{Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) | —
Untitledd0 ps1*(Recovered) Untitledd6 ps1*(Recovered) Untitled52 ps1*(Recovered) Untitled58.ps1* (Recovered) Untitled84,ps1*(Recovered)
Untitled69.ps1™(Recovered) Untitled75.ps1*(Recovered) Untitled76.ps1*(Recovered) Untitled77.ps1*(Recovered) Untitled78.ps1*(Recovered) 2;ﬂrﬂanr:‘.‘slcredShErecFac(age(:ima\'\el
MyMathModule.psm1 Untitled79.ps1*(Recovered) Untitled80.ps1*(Recovered) Untitled81.ps1*(Recovered) Untitled82.ps1* X Add-AppSharedPackageContainer

SvmName = "MyWM" Ada-AppvClientConnectionGroup

Svmsize

"Standard_DS2_v2

SadminUsername = “azureuser

Connect-AzAccount

2

2 .

4 SadwinPassword = ConvertTo-SecureString _ -AsPlainText -Force
5 Slocation = "eastus”

&

!

9 New-AzVm -ResourceGroupName SresourceGroupName -Name SvmName -Location $location

-VirtualMetworkName "MyVNet” -SubnetName "MySubnet
-SecurityGroupName "MyNetworkSecurityGroup™ '

-PublicIpAddressName “MyPublicIP” -OpenPorts 3389

-ImageName "Win2019Datacenter” -Size SvmSize °

~Credential (New-Object PSCredential SadminUsername, SadminPassword)

Ty vacier oo

0sProfile

Plar

Microsoft.Azure.Management. Compute.Models.0SProfile

Bi1lingProfile
n

Provisioningstate Succeeded
Microsoft.Azure.Management.Compute.Models. StorageProfi
DisplayHint Compact

Stora

Identity
Zones

FullyQualifiedDomainName

AdditionalCapabilities
Proximi tyPlacementGroup

Host

VirtualMachineScaleSet
EvictionPolicy

Priority
HostGroup

CapacityReservation

UserData

ApplicationProfile
PlatformFaultDomain
TimeC ted

RequestId

StatusCode

oudapp. azure. com

Add-AppvCiientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-Appxvolume
Ada-AzADAppPermission
Add-AzADAppPermission
Add-AzADGroupMember
Add-AzADGroupMember
Ada-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApiToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup

yAuthenticationCertificate
yBackendAddres:
BackendHittpSetting
asetting

ool

2yBack
CustomError

wayFrontendiPConfig

tepListener

tiplListenerCustor
Configuration

teLinkConfiguration
robeConfig
Add-AzApplicationGa

ByRedirectConfiguration

Ln 158 Col 25 100%

@D
@]

rosoft Azure

Virtual

Create -

owing 1to

[Name ©

)\ Virtual machines - Microsoft Azv X -

] 5 portal.azure.com,

machines

Switch to classic Reservations v Manage view

cription equals all Type equals all

2 of 2 recore

Type Ty Subscription)
Virtual machine

Virtual machine

P search resources, services, and docs (G+/)

Re Export to CSV Open query |

source group equal X Location equals all X (g add filter

Resource group T4 Location Ty Status Operating system ™y
East US Stopped (deallocated) Windows

East US Running Windows

@ #®

alexmarin@ o
CAPHYON SRL (CAPHYON.ONM. &'

No grouping
size T4 Public IP address 7,
Standard_D2s v3

Standar

www.alexandrumarin.com

256

http://www.alexandrumarin.com

Start and Stop a Virtual Machine:

SvmName = "MyVM"
SresourceGroupName = "MyResourceGroup"

Start-AzVM -ResourceGroupName SresourceGroupName -Name SvmName
Stop-AzVM -ResourceGroupName SresourceGroupName -Name SvmName -Force

The Start-AzVM cmdlet is used to start an Azure virtual machine. In this example, we provide
the name of the resource group containing the virtual machine using the
-ResourceGroupName parameter, and the name of the virtual machine to be started is
passed with the -Name parameter. When executed, this cmdlet initiates the process of
starting the specified virtual machine.

B Administrator: Windows PowerShell ISE - o b3

File Edit View Tools Debug Add-ons Help
i =T = I G-V = I N P & B | = | & | Foo| o mE.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3,ps1*(Recovered) copyfolder.ps1 Untitled4.ps1=(Recovered) UntitledS.ps1*(Recovered) Commands X X
| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitlad13.ps1*(Recovered) Modules: | All v

| Untitied16.ps17(Recovered)
| Untitied40.ps1=(Recovered)
| Untitled69.ps1*(Recovered)

| MyMathiodule.psm1

1 SvmName = "MyVM

AppFinderpsT
Untitled46.psT*(Recovered)
Untitied75.ps1*(Recovered)

Untitled79.ps1*(Recovered)

Untitled21,ps1"{Recavered)

Untitled52,ps1*(Recovered)
Untitled76.ps1*(Recovered)

Untitled80.ps1*(Recovered)

| Untitled27.ps1*(Recovered)

get-azpolicies.ps1
Untitled58.ps1*(Recovered)
UntitledT7.ps 1*(Recovered)

Untitled81.ps1*(Recovered)

Untitled33.ps1*(Recovered)
Untitled64.ps1*(Recovered)
Untitled78.ps1*(Recovered)

Untitled82,ps1*

Name:

A
Add-AppProvisienedSharedPackageContainer
Adg-AppSharedPackageContainer
‘Add-AppvClientConnectionGroup

2 $vmsize - "standard_Ds2_v2" Add-AppvClientPackage
3 SadminUsername = “azureuser
4 $resourceGroupName = "MyResourceGroup” Add-AppyPuslishingServer
5 SadwinPassword - ConvertTo-SecureString "P@sswOrdl23!" -AsPlainText -Force Adc-ApprPackage

$1c tic = "east
H peamien = eastus Add-AppxProvisionedPackage
& Connect-AzAccount Ade-AppxVolume

10 Start-AzVM -ResourceGroupName S$resourceGroupName -Name $wmName
11 #Stop-AzWM -ResourceGroupName SresourceGroupName -Name SvmName -Force

SadminPas
$location

Connect-AzAccount

Start-AzVM -ResourceGroupName $

ur ceGroup”

reString "P@sswOrdl231" -AsPlainText -Force

our ceGroupName

~Name $vmName

#5top-AzWM -Resour ceGroupName $resourceGroupName -Name SvmName -Force

Account
alex.maring

OperationTd :
Status
startTime
EndTime

Error

Name

ucceeded

Completed

dd6f6519-527

TenantId

Add-AzADAppPermission
Adg-AZADAppRermission
Add-AzADGroupMember
Ada-AzADGroupMember
Add-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApTToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion

Ado-AzApiManagementUserToGroup
Ada-AzApplicationGatewayAutnenticationCertificate
Ada-AzApplicationGatewayBackendAddressPool

PrivatelinkConfiguration

ProbeConfig

Add-AzApplication RedirectConfiguration

Ln4 Col39

100%

On the other hand, the Stop-AzVM cmdlet is used to stop an Azure virtual machine. Using the
-ResourceGroupName and -Name parameters, we provide the resource group name and
virtual machine name, similar to the Start-AzVM cmdlet. In addition, the -Force parameter is
used to forcefully stop the virtual machine if it does not respond to the regular stop
command. When run, this cmdlet will initiate the shutdown of the specified virtual machine.

www.alexandrumarin.com

257

https://learn.microsoft.com/en-us/powershell/module/az.compute/start-azvm?view=azps-10.1.0
https://learn.microsoft.com/en-us/powershell/module/az.compute/stop-azvm?view=azps-10.1.0
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE
File Edit View JTools Debug Add-ons Help

I~ ~ a » L

Untitled2.ps1*(Recovered)

% | 8|5 oo

Untitled3 ps1* (Recovered)

.

Untitled1.ps1*(Recovered copyfolder.psl Untitled4.ps1*(Recovered UntitledS.ps1*(Recovered
P P P P P

| Untitied6ips1*(Recoverad) Untitled7.psT"{Recovered) Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1"(Recovered)

| Untitied16.ps1=(Recovered) AppFinderpsl Untitied21,ps1-{Recovered) | Untitied27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered)

| Untitiedd0,pst*(Recovered) Untitied6.ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled58.ps1*(Recovered) Untitleds4.ps1*(Recovered)

| Untitled69.ps1™(Recovered) Untitled75.ps1*(Recovered) Untitled76.ps1*(Recovered) Untitled77.ps1*(Recovered) Untitled78.ps1*(Recovered)

| MyMathModule.psm1

1 SvmName = "MyWM"
$unsize = "Standard_Ds2_v2"
SadminUsername = "azureuser”

Untitled79.ps1*(Recovered) Untitled80.ps1*(Recovered) Untitled&1.ps1*(Recovered) Untitled82,ps1*

2
3

4 SresourceGroupName = "MyResourceGroup”

5 SadminPassword = ConvertTo-SecureString "P@sswOrd1231” -AsPlainText -Force
6 Slocation = "eastus”
8

0

1

Connect-AzAccount

#Start-AzWM -ResourceGroupName $resourceGroupName -Name SvmName
Stop-AzWM -ResourceGroupName $resourceGroupName -Name SvmName -Force

ur ceGroup”
SadminPas reString "P@sswOrd123!” -AsPlainText -Force
$location

Connect-AzAccount

#Start-AzVM —ResourceGroupName $resourceGroupName -Name $vmName
Stop-AzVM -ResourceGroupName $resourceGroupName -Name SvmName -Force

Account St TenantId

alex.maring

OperationTd
Status
startTime
EndTime
Error

Name

PS C:\WINDOWS

Commands X

Modules: | All

Name:

A
Ade-AppProvisioredsharedPackageContainer
Add-AppSharedPackageCantainer
Add-AppyClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer

Add-AppxPackage
Add-AppxProvisionedPackage

Add-Appxvolume

Ada-AzADAppPermission
Add-AzADAppPermission
Add-AzADGroupMember
Add-AzADGroupMember
Ada-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplicationGatewayAuthenticationCertificate
Ade-AzApplicationGatewayBackendAddressPool
Add-AzApplicationGatewayBackendHitpSetting
BackendSetting
yCustomError
FrantendIPConfig
FrantendPort

PConfiguration
Uistener
PrivateLinkConfiguration

ProbeCanfig

Add-AzApplication RedirectConfiguration

Ln 55 Col 25

100%

Remove a Virtual Machine:

Remove-AzVM -ResourceGroupName SresourceGroupName -Name SvmName -Force

The Remove-AzVM cmdlet is used to delete an Azure virtual machine. In this example, we

use the -ResourceGroupName parameter to specify the name of the resource group
containing the virtual machine, and the -Name parameter to specify the name of the virtual
machine to be deleted. The -Force parameter is used to bypass the confirmation prompt and

remove the virtual machine without warning.

When executed, this cmdlet starts the process of removing the specified virtual machine and
its associated resources from the Azure environment, such as OS disks, data disks, network

interfaces, and public IP addresses. This cmdlet should be used with caution because the

deletion action is irreversible and can result in permanent data loss. As a result, it is strongly
advised to double-check the provided parameters and ensure that the virtual machine to be

removed is the one intended.

www.alexandrumarin.com

258

https://learn.microsoft.com/en-us/powershell/module/az.compute/remove-azvm?view=azps-10.1.0
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE

File Edit View Tools Debug
=l & 5]

Untitled1.ps1*(Recovered)

Untitled6 ps1*Recovered)
Untitled16,ps1(Recovered)
Untitled0.ps1*(Recovered)
Untitled69.ps1*(Recovered)

MyMathModule,psm1

SvmName = "MyvM'
$resour ceGroupName

Connect-AzAccount

EXETan

PS C:\WINDOWS\system3:

SvmName

Add-ons Help

P [B = | &
Untitled2.ps1*(Recovered) Untitled3 ps1* (Recovered)
Untitled7.psT"{Recovered) Untitled8 ps1*(Recovered)
AppFinderpsl Untitled21,ps1"(Recovered)
Untitied6.ps1*(Recovered) Untitled52.ps1*(Recovered)
Untitled75.psT*(Recovered) Untitled76.ps1* (Recovered)

Untitled79.ps1*(Recovered) Untitled80.ps1*(Recovered)

= 'MyResourceGroup’

Remove-AzWM -ResourceGroupName $resourceGroupName -Name SvmName -Force

"My VM®

$resourceGroupName = "MyResourceGroup®

Connect-AzAccount

Remove-AZWM -ResourceGroupName $resourceGroupName -Name $vmName -Force

Account
alex.marin

OperationId
Status
startTime
EndTi

Error

SubscriptionName

TenantId

Microsoft Partner Network

’;__

copyfolder.psl

Untitled27.ps1*(Recovered)

.

Untitled4.ps1*(Recovered)

SearchApplicationGetUninstallKey.ps1

get-azpolicies.ps1
Untitled58.ps1*(Recovered)
Untitled77.ps 1" (Recovered)

Untitled&1.ps1*(Recovered)

Environment

AzureCloud

UntitledS.ps1*(Recovered)
Untitled13.ps1"(Recovered)
Untitled33.ps1*(Recovered)
Untitleds4.ps1*(Recovered)
Untitled78.ps1*(Recovered)

Untitled82,ps1*

Commands X

Modules: | All

Name:

A
Ade-AppProvisioredsharedPackageContainer
Add-AppSharedPackageCantainer
Add-AppyClientConnectionGroup
Add-AppvClientPackage
Add-AppvPublishingServer
Add-AppxPackage
Add-AppxProvisionedPackage
Add-Appxvolume
Ada-AzADAppPermission
Add-AzADAppPermission
Add-AzADGroupMember
Add-AzADGroupMember
Ada-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup

yAuthenticationCertificate

jayBackendAddres:
BackendHitpSetting
dsetting

CustomError

ool

2yBack

yFrantendiPConfig
FrontendPort
tepListener

tiplListenerCustor
Configuration
yListener
teLinkConfiguration
obeConfig

Add-AzApplicationGa

ByRedirectConfiguration

Ln 22 Col 25

100%

You can also check directly in Azure that the machine has been successfully deleted:

A .
g ®

Microsoft Azure

Virtual machines

Create Switch to cl

sShowing 1to 1 of 1 records.

[] Name *

Type Ty

\ Virtual machines - Microsoft Az X+

portalazure.com,

P Search resources, services, and docs (G+/)

Reservations Manage view Refresh

iption equals all Type equals all

Subscription T4

Virtual machine

Export to CSV

Resource group equ

Resourcegroup T4 Location Ty

East US

Open query |

Location equals all

Status Ty

Stopped (deallocated)

*o add filter

Operating system Ty

Windows

@

alex marin@

Maintenance

grouping

Public IP address T,

List view

Disks T4

www.alexandrumarin.com

259

http://www.alexandrumarin.com

Configuring Azure Storage Accounts

Azure Storage Accounts provide scalable and durable cloud storage solutions for a wide
range of data types. PowerShell enables you to create, manage, and configure Azure Storage
Accounts effortlessly.

Here are some examples of how to work with Azure Storage Accounts using PowerShell:

Create a New Storage Account

SstorageAccountName = "mybookteststorage”
SaccountType = "Standard_LRS"
Sstoragelocation = "EastUS"

Connect-AzAccount
New-AzStorageAccount -ResourceGroupName SresourceGroupName -Name

SstorageAccountName
-Location SstoragelLocation -SkuName SaccountType

Using PowerShell, this code creates a new Azure Storage Account. The variable
SstorageAccountName specifies the storage account name "mybookteststorage,’ and the
variable SaccountType specifies the storage type "Standard LRS." The variable
Sstoragelocation indicates that the storage account will be located in the "EastUS" region.

Before creating the storage account, the script connects to the Azure account with
Connect-AzAccount to ensure the necessary authentication.

The New-AzStorageAccount cmdlet is responsible for creating the storage account. It
accepts several parameters, including -ResourceGroupName, which specifies the name of
the resource group where the storage account will be created. The -Name parameter
specifies the name of the new storage account as the value of the SstorageAccountName
variable. The -Location parameter uses the value of the $storagelLocation variable to set the
desired region for the storage account, which is "EastUS" in this case. The -SkuName
parameter specifies the storage account type, which is "Standard LRS," based on the value of
the SaccountType variable.

www.alexandrumarin.com 260

https://learn.microsoft.com/en-us/powershell/module/az.storage/new-azstorageaccount?view=azps-10.2.0
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE - o X
File Edit View JTools Debug Add-ons Help

e | & B x| 9 P @B w8 B0 & [m@.
| Untitlea1.ps1*(Recoverec) Untitled2.ps1*(Recovered) Untitledi3 ps1*(Recovered) copyfolder.ps1 Untitledd. ps1*(Recovered) Untitleds.ps1*(Recovered) Commands X X
| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) Modules: | All v
| Untitled16.,ps1"(Recovered) AppFinderps1 Untitled21,ps1<(Recovered) | Untitied27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) e
| Untitlead0.psi*(Recovered) Untitledd6.ps1*(Recovered) Untitled52 ps1*(Recovered) Untitled58.ps1*(Recovered) Untitled6d.ps1*(Recovered)
A
| Untitled69.psT*(Recaversd) Untitled75.ps1"(Recovered) Untitled76.ps1*(Recovered) Untitled77.ps1*(Recovered) Untitled78.ps1*(Recovered) A AppProviiEnedshareaPackageContaner
| MyMatnModule psm1 Untitled79.ps1*(Recovered) Untitled80.ps1*(Recovered) Untitled81.ps1*(Recovered) Untitled82,ps1* x Add-AppSharedPackageContainer
$storageAccountName = "mybookteststorage” Add-AppvClientConnectionGroup

2 SaccountType = "Standard _LRsS" Add-AppvClientPackage

3 Sstoragelocation = "EastUs”

1 Add-AppvPublishingServer

5 Connect-AzAccount Add-AppxPackage

s Ada-AppxProvi dPacka

7 New-AzStorageAccount -ResourceGroupName SresourceGroupName -Name SstorageAccountName * -AppxProvisionedPackage

s -Location Sstoragelocation -SkuName SaccountType| Add-AppxVolume

Adc-AzADAppPermission

Ado-AzADAppPermission

Ado-AzADGroupMember

Add-AzADGroupMember

Adc-AzAnalysisServicesAccount

Adg-AzApiMansgementApToGateway

o = Ado-AzApiManagementApiToProduct

EnablettpsTrafficonly : Add-AzApiManagementProductToGroup

AzureFilesIdentityBasedAuth :) -

EnableHierar chicalNamespace 5 Adg-AzApiManagementRegion

FailoverInpr : Add-AzApiManagementUserToGroup

;:a::ll:?:?;: rate i oft. Azure.Commands . Management. Storage. Model NetworkRuleSet Add-AzApplicationGatewayAuthenticationCertificate
i yBackendaddressPocl

8 yBackendHitpSetting

3 T Ada-AzApglicationGatewayBackendSetting

TL51 0 Add-AzApplicationG: yCustomError

yFrontendiPConfig

yFrontendPort

EnableLocalUser : Add-AzApplicationG
AllowShar ed 3 Ado-AzpplicationGat
Add-AzApplicationGatewayHtpListenerCustomErrar

Add-AzApplicationGate:

yHttpListener

yIPConfiguration

thversioning
i

yListener
yPrivateLinkConfiguration

StorageAccount:
DnsEndpointType

Context : Microsoft.WindowsAzure.Commands . Common . Storage. LazyAzur eStorageContext
ExtendedProperties :) yProbeConfig
yRedirectConfiguration

Completed Ln8 Col 68 100%

List Storage Accounts:

Get-AzStorageAccount

The Get-AzStorageAccount cmdlet is used in the following PowerShell code to retrieve
information about Azure Storage Accounts. When run, this cmdlet searches the Azure
environment for all existing storage accounts and returns a list of their relevant details, such
as account name, resource group, location, and account type. It does not necessitate any
additional parameters or arguments.

Upon executing the code, the output will display a list of Azure Storage Accounts, presenting
the relevant information for each account. This information can be used for various
purposes, such as further management, analysis, or reporting of existing storage accounts
within the Azure subscription.

www.alexandrumarin.com 261

https://learn.microsoft.com/en-us/powershell/module/az.storage/get-azstorageaccount?view=azps-10.2.0
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE - o X
File Edit View JTools Debug Add-ons Help

e |4 B » [B = |8 500 & 3.
Untitled1.ps1*{Recovered) Untitled?.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledd.ps1*{Recovered) Untitieds ps1*(Recoverad) Commands X x
Untitled6,ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps] Untitled13.ps1*(Recovered) Moduless | All v
Untitled16.ps1"(Recovered) AppFinder.ps1 Untitled?1.ps1*{Recovered) Untitled27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) Name
Untitled40.ps1*(Recovered) Untitled46.ps1*(Recovered) UntitledS2.ps1*(Recovered) Untitled58.ps1*(Recovered) Untitleds4.ps1*(Recovered)
A

Untitled69.psT"(Recovered) Untitled75.ps1"(Recovered) Untitied76.ps1*(Recovered) Untitled77.ps1*(Recovered) Untitled78.ps1"(Recovered) Ade-ApsProvsionedsharedPackageContaer
MyMathodule psm1 Untitled79.ps1*(Recovered) Untitled80.ps1*(Recovered) Untitled81.ps1*(Recovered) Untitled82.ps1* x Add-AppSharedPackageContainer

1 S$storageAccountName = "mybookteststorage” Ada-AppuCiientConnectionGraup

2 SaccountType = "Standard_LRS" Add-AppvClientPackage

3 $storagelocation = "EastUs”

2 Add-AppvPublishingServer

5 Connect-AzAccount Add-AppxPackage

6 Packa

7 New-AzStorageAccount -ResourceGroupName SresourceGroupName -Mame $storageAccountMame ° Ada-RppxProvisionedPackage

8 -Location $storagelLocation -SkuName $accountType Add-AppxVolume

Ada-AzADAppPermission
Add-AzADAppPermission
Add-AzADGroupMember
Add-AzADGroupMember
Add-AzAnalysisSery A

Adg-AzApiMansgementApToGateway
Add-AzApiManagementApiToProduct
Add-AzApiManage
our ceGroupName Primarylocation SkuName Kind AccessTier CreationTime Provisioming Add-AzApiManage

t

:\WINDOWS\system32> Get-AzStorageAccount

tProductToGroup
thegion

e Add-AzApiManagementUserToGroup
Standard_RAGRS E PM Succeeded Add-AzApplication

AuthenticationCertificate

mybookteststorage MyResourceGroup s Standard_LRS orageVz Hot 23 Succeeded Aadc-Azapplication S —
westeurope Standard_LRS orageVz Hot AM Succeeded

Adg-AzApplication ndHttpSetting
Add-AzApplicationt dSetting

PS C:\WINDOWS\system32> Add-AzApplication mError
Adc-AzApplication endiPConfig
Adc-AzApplication endFort
Ada-AzApplication tener
Adc-AzApplication

stenerCustomError
figuration

eLinkConfiguration
Config

Add-AzApplication eciConfiguration

Ln12 Col 25 100%

Retrieve Storage Account Keys

SstorageKeys = Get-AzStorageAccountKey -ResourceGroupName SresourceGroupName
-Name SstorageAccountName

SstorageKeys[0].Value # Primary Access Key

SstorageKeys[1].Value # Secondary Access Key

The Get-AzStorageAccountKey cmdlet is used in this PowerShell code snippet to retrieve the
access keys for an Azure Storage Account. The cmdlet is run with two parameters:
-ResourceGroupName, which specifies the name of the resource group containing the
storage account, and -Name, which specifies the name of the storage account for which the
access keys are to be retrieved.

The Get-AzStorageAccountKey cmdlet retrieves the storage account access keys and stores
them in the variable SstorageKeys. For securely authenticating and accessing the storage
account, access keys are required. Following the cmdlet call, the two lines that follow extract
the actual access key values from the SstorageKeys variable. The first line of code is
SstorageKeys[0]. The first line, SstorageKeys[1], retrieves the primary access key. Value,
which returns the secondary access key.

These access keys can be used to authenticate operations such as reading, writing, or
managing data stored in the Azure Storage Account. To ensure the security of the Azure

www.alexandrumarin.com 262

https://learn.microsoft.com/en-us/powershell/module/az.storage/get-azstorageaccountkey?view=azps-10.2.0
http://www.alexandrumarin.com

Storage Account, it is critical to handle these access keys securely and avoid exposing them
unnecessarily.

B Administrator: Windows PowerShell ISE - o X
Fle Edit View Tools Debug Add-ons Help
& H & a » [B @ |8 |5 0o0|& 3.
Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1*(Recovered) copyfolder.ps1 Untitledé,ps1*(Recovered) Untitledsps1*(Recovered) Commands X x
Untitled6.ps1*(Recovered) Untitled7. ps1*(Recovered) Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) Modules: | All .
Untitied 16.ps1*{Recovered) AppFinder.ps1 Untitied21,ps1*(Recoversd) Untitied27.ps1*(Recovered) get-azpolicies.ps] Untitled33.ps1*(Recovered) Name:
Untitled40,ps1”(Recovered) Untitled46.ps1”(Recovered) Untitled52.ps1*(Recovered) Untitled58.ps1*(Recovered) Untitled64.ps1*(Recovered)
A
Untitled69.ps1*(Recovered) Untitled75.psT*(Recovered) Untitled76.ps1*Recovered) UntitledT7.ps 1" (Recovered) Untitled78.ps1*(Recovered) Ad-ApgProvsonedSharedPackageContaier
MyMathhodule psm1 Untitled79.ps 1" (Recovered) Untitled80.ps1*(Recovered) Untitled81.ps1”(Recovered) UntitledB2.ps1* x Add-AppSharedPackageContainer
1 S$storageAccountName = "mybookteststorage” Add-AppvClientConnectionGroup
2 $accountType = “Standard_LRS" Add-AppvClientPackage
3 $storagelocation = "EastUs” N
4 SresourceGroupName - “MyResourceGroup” Add-AppuPuBlishingServer
5 Ada-AporPackage
& Comnect-AzAccount Add-AppiProvisionedPackage
8 $storageKeys = Get-AzStorageAccountKey -ResourceGroupName $resourceGroupName -Name $storageAccountName Ada-Appxvolume

5 i s e ke e exDisemision
11 Add-AzADAppPermission
Add-AzADGroupMember
Add-AzADGroupMember
Add-AzAnalys:
Add-AzApiManagementApiToGateway

Account

Add-AzApiManagementApToProduct
Add-AzApiManage:

$storageloc: StUS™ Add-AzApiManage
$resourceGroupNam our ceGroup”

SstorageAccountName = "mybookteststorage”
rd_LRS™

tProductToGroup

tRegion
Ado-AzApiManagementUserToGroup
AuthenticationCertificate
ndAddressPocl
ndHitpSetting
ndSetting

mError

Connect-AzAccount

$storageKeys = Get-AzStorageAccountks ourceGroupName $resourceGroupName —Name $storageAccountName
$stor

ageKeys[0].Value # Primary Acce:
$storageKeys[1].value # Secondary Access Key

Account SubscriptionName TenantId Environment
alex.marint . _ t Partner Network AzureCloud
v HitpListener
] HitpListenerCustomerror
figuration
PS C:\WINDOWS\sy:
\eys' eLinkConfiguration
Config
eciConfiguration

Ln21 Col 25 100%

Remove a Storage Account

Remove-AzStorageAccount -ResourceGroupName SresourceGroupName -Name
SstorageAccountName -Force

To delete an Azure Storage Account, we use the Remove-AzStorageAccount cmdlet. The
cmdlet is called with three arguments: The -ResourceGroupName option specifies the name
of the resource group in which the storage account is located, the -Name option specifies
the name of the storage account to be removed, and the -Force option suppresses
confirmation prompts and forces the deletion without user confirmation.

The Remove-AzStorageAccount cmdlet deletes the specified Azure Storage Account and all
associated data, such as blobs, tables, queues, and file shares, when run. The -Force
parameter ensures that the deletion process is completed without further user interaction.

When using this cmdlet, exercise extreme caution because the deletion is permanent and
cannot be reversed. Before running this command, make sure you've taken appropriate
backups or made the necessary arrangements for data preservation. Also, make sure you
have the permissions and privileges to delete the specified Azure Storage Account and its
associated resources.

www.alexandrumarin.com 263

https://learn.microsoft.com/en-us/powershell/module/az.storage/remove-azstorageaccount?view=azps-10.2.0
http://www.alexandrumarin.com

B Administrator: Windows PowerShell ISE - o X
File Edit View JTools Debug Add-ons Help

=T = 'S ox|9 P B W = |8 Foo|®;[E.

Untitled1 ps1*{Recovered) Untitled2.ps1*(Recovered) Untitled3 ps1*(Recovered) copyfolder.ps1 Untitledd ps1*{Recovered) Untitleds. ps1*{Recovered) Commands X x
Untitled6.ps1*Recovered) Untitled7.psT™{Recovered) Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps] Untitled13.psT"(Recovered) Moduies: | Al v
Uniitled16.ps1"{Recovered) AppFinderps1 Untitled?1,ps1*{Recovered) Untitled27.ps1*(Recovered) get-azpolicies,ps1 Untitled32,ps1*(Recovered) e
Untitled40.pst*(Recoverad) Untitled46.ps1*(Recovered) Untitled52.ps1*(Recovered) Untitled58.ps1* (Recovered) Untitled64.ps1*(Recovered)
A
Untitled69.ps1™(Recovered) Untitled75.ps1*(Recovered) Untitled76.ps1*(Recovered) Untitled77.ps1*(Recovered) Untitled78.ps1*(Recovered) Ada-AppProvisionedsharedPackageContainer
MyMathModule psm1 Untitled79.ps1" (Recovered) Untitled80.ps1* (Recovered) Untitled81.ps1*(Recovered) Untitled82.ps1* X Add-AppSharedPackageContainer
SstorageAccountName = "mybookteststorage” Ado.AppuCiiEntConnactionGroup

2 SaccountType = "Standard LRS" Ado-AppuClientPackage

5 Sstoragelocation = "EastUs" =

4 SresourceGroupName = "MyResourceGroup” Ada-ApovPublishingServer

5 Ado-AppxPackage

& Connect-AzAccount Ado-AppxProvisionedPackage

5 Remove-AzStorageAccount -ResourceGroupName| SresourceGroupName -Name S$storageAccountName -Force Adc-Apprvolume

Ada-AzADAppPermission
Add-AzADAppPermission
Add-AzADGroupMember
Add-AzADGroupMember
Ada-AzAnalysisServicesAccount
Add-AzApiManagementApToGateway
Add-AzApiManagementApiToProduct
Add-AzApiManagementProductToGroup

$storagelocation Add-AzApiManagementRegion
$resourceGroupName = "MyResour ceGroup”

SstorageAccountName = "mybookteststorage”

Add-AzApiManagementUserToGroup
Connect-AzAccount

yAuthenticationCertificate

ool

jayBackendAddres:
BackendHitpSetting
dsetting

CustomError

Remove-AzStorageAccount -ResourceGroupName $resourceGroupName -Name $storageAccountName -Force

Account SubscriptionName TenantId Environment Ada-AzApplicationGatewayBacks
alex.marint rosoft Partner Network AzureCloud Ade-AzApplicationGa
ayfrontendIPConfig
FrontendPort
ttpListener

tiplListenerCustor
Configuration
yListener
teLinkConfiguration
obeConfig

Add-AzApplicationGa

ByRedirectConfiguration

Completed Ln8 Col42 100%

You can also check this directly in Azure under Storage Accounts to see if the storage has
been deleted:

B M | A\ Storageoccounts -Micosoft Az X+
C m <://portal.azure.com,

Microsoft Azure P Search resources, services, and docs (G+/)

Storage accounts

Create) Restore 73 Manage view Refresh ExporttoCsV 5 Open query |
Subscription equals all Resource group equals all X Location equalsall X (tp Add fiter
owing 1 to 2 of 2 records. No grouping | [== tist view .

[] Name * Type T Kind 4 Resource group 4 Location Ty Subscription Ty

O= Storage account Storagevz East US

Storage account Storagev2 est Europe

www.alexandrumarin.com 264

https://portal.azure.com/#view/HubsExtension/BrowseResource/resourceType/Microsoft.Storage%2FStorageAccounts
http://www.alexandrumarin.com

Azure Cloud Shell

Azure Cloud Shell is a powerful interactive command-line environment provided by Microsoft
Azure that allows users to manage their Azure resources directly from the Azure portal or
through the Azure command-line interface (CLI) with no additional setup or installation
required. It provides a browser-based shell experience that can be accessed from any
location with an internet connection, making it a useful and adaptable tool for managing
Azure resources. Bash and PowerShell are the two scripting technologies available within
the Azure Cloud Shell.

Configuring Azure Cloud Shell

To use Azure Cloud Shell, simply navigate to the Azure portal and log in with your Azure
credentials. Once logged in, click on the "Cloud Shell" icon in the top-right corner of the
portal. The first time you access Cloud Shell, you will be prompted to choose between Bash
and PowerShell as your preferred shell.

A M \ Home - Microsoft Azure x +
< C M () hitpsy//portalazure.com/#home B g = @ @

Microsoft Azure O Search resources, services, and docs (G+/) ® o g alecmain®

Azure services

HH
= T ¢ ¢ &
Storage Virtual Resource Allresources Azure Active Subscriptions Azure AD Azure Virtual
accounts machines groups Directory Domain. Desktop
Resources

Recent Favorite

Type Last Viewed

Storage account 6 minutes ago
Subseription 5 months ago
Virtual machine 7 months ago

Key vault 2 yearsago

Navigate

—
? SfserriEE @) Resource groups BEE Al resources Bl ooshboard

Learn Azure with free online e Monitor your apps and " secure your apps and ‘ Analyze and optimize your

training from Microsoft infrastructure infrastructure dloud spend for free

Useful links Azure mobile app

Azure Cloud Shell supports both Bash (Linux-based) and PowerShell (Windows-based)
environments. You can switch between these two environments based on your preference
and familiarity with the respective shells. Simply click on the shell type icon in the top menu
to toggle between Bash and PowerShell.

www.alexandrumarin.com 265

https://portal.azure.com/
http://www.alexandrumarin.com

To save your preferences and session data, Azure Cloud Shell requires a storage account. If
you already have an existing storage account, it will be used automatically. If this is not the
case, Azure will create a new storage account for you during the initial setup.

B M\ avgstorages- MicosoftAure X
C @ O nipsy/portalazurecom/ t.com/reso s d dfreso oups/KeyVaultGro B : s =@

Microsoft Azure O Search resources, services, and docs (G+/) alexmarin@

Storage accounts < avgstorages | Storage browser

Create Restore --- P avgstorages Add file share Refresh Edit columns
Overview =k Favorites
Activity log > ## Recently viewed R TS

Tags i Blob containers

Diagnose and solve problems Tier]

‘Access Control (1AM)

i Transaction optimized 671172
Data migration
Events W Queues

Storage browser 8 Tables

. Storage Mover

Data storage
& Containers
8 File shares
W Queues

W Tables

You have no storage mounted
supscrption Cloua snell region.

Hid

Microsoft Partner Network | [eastus ;

* File share
O Createnew @ Use existing O Createnew @ Use existing

KeyVaultGroup | [avastorages | [avdfileshare

r information about Clos

MR M\ avgstorages- MicrosoftAzwre X -+
G @ O nups//portalazurecom,

Microsoft Azure O Search resources, sarvices, and docs (G+/) alexmaring

Storage accounts s avgstorages | Storage browser

Restore “-* [% avgstorages Privacy settings \/ Feedback

A e * = i
B Overview = Favorites Storage account metrics

B Activity log [— The data provided is reqularly updated about 2-4 times 2 day and published hourly. If your account has
arge objects, it may be over a day between updates.
Tags i Blob containers
5
& Diagnose and solve problems - .
5 || Biob containers
Access Control (1AM) 8 avdfileshare Number of containers
® Data migration Number of blobs

Total data stored
% Events W Queues

= Storage browser Tobles
% Storage Mover File shares

Data storage Number of file shares

_ Number of fles
B Containers

Total data stored
-8 File shares
W Queues

W Tables

PowerShell & | O ? & [[0 B

Requesting a Cloud
Connecting terminal

Welcome to Azure Cloud Shell
" to use Azure CLL
learn about Cloud Shell
ure Cloud 11 now includes Predictive IntelliSense! Learn more: https://aka.ms/CloudShell/IntelliSense

: Buthenticating to Azure ...

www.alexandrumarin.com 266

http://www.alexandrumarin.com

Using Azure Cloud Shell

Azure Cloud Shell is pre-configured with a number of commonly used tools, such as the
Azure CLI, Azure PowerShell module, Git, and other utilities. You can use these tools to
efficiently manage Azure resources. It supports persistent file storage, allowing you to save
scripts, configuration files, and other resources across sessions. Cloud Shell saves your
environment settings and session history between logins, ensuring a consistent experience
every time you use it.

Azure Cloud Shell, as a browser-based shell, enables you to work directly from the Azure
portal, eliminating the need for local installations or dependencies. It uses your Azure
credentials to automatically authenticate you, saving you time and effort while ensuring
secure access to Azure resources. It is also including a simple text editor that lets you
create, edit, and save files directly in the browser.

For example, you can use different cmdlets which are included in the AZ module, apart from
the standard ones that are available as standard on devices.

e X +
://portalazure.com/#@caphyon.onmicrosoft.com/resource/subscriptions/ab5974b6-1689-Acfe-9773-c5ccI6d72b5d/resourceGroups/KeyVaultGroup/pr... H Q=@

P Search resources, senvices, and docs (G+/) alexmarinG

Storage accounts « mm avgstorages | Storage browser % % -

Create Restore * P augstorages Privacy settings Feedback

- N . .
B Overview = Favorites Storage account metrics

B Activity log > ¥ Recently viewed

The data provided is regularly updated about 2-4 times a day and published hourly. If your account has
extr e objects, it may be over a day between updates.

Tags ™ Blob containers

5
¢’ Diagnose and solve problems -
S (= |l Biob containers

Access Control (1AM) -8 avdfileshare Number of containers

B Data migration Number of blobs

Total data stored

¥ Events W Queues

* Storage browser & Tables

M storage Mover g
! 9 o) File shares

Data storage Number of file shares
Number of files

B Containers
Total data stored

-8 File shares
W Queues

Page [1 Jor1 W Tables

PowerShell v | & ? & 3 M O B

In the example above, we used the Get-AzureADUser cmdlet to retrieve a small list of users
which appear in our tenant.

Azure Cloud Shell is a fantastic tool for managing Azure resources, especially for quick ad
hoc tasks and automation scripts. It delivers a consistent and familiar experience across
multiple platforms, making it usable by developers, administrators, and IT professionals

www.alexandrumarin.com 267

https://learn.microsoft.com/en-us/powershell/module/azuread/get-azureaduser?view=azureadps-2.0
http://www.alexandrumarin.com

alike. Its integration with Azure services and automatic authentication make Azure resource
management easier, making it a valuable tool for efficiently managing your cloud
infrastructure.

www.alexandrumarin.com 268

http://www.alexandrumarin.com

Exporting Data from Azure using PowerShell

Administrators can retrieve valuable information about their resources, configurations, and
policies by exporting data from Azure and Intune using PowerShell. PowerShell has powerful

cmdlets and modules that make data extraction easier, making it a versatile and efficient

tool for managing and analyzing Azure and Intune environments.

Connecting to Azure and Intune

Although we have touched this subject in previous chapters, it is important to stress that to
begin exporting data, first, establish a connection to Azure and Intune using the appropriate
PowerShell modules. For Azure, the "Az" module is used, while the "Microsoft.Graph.Intune"
module is used for Intune. Also make sure that all the permissions necessary for the

operations are set.

Connect to Azure
Connect-AzAccount

Connect to Intune
Connect-MSGraph

.
B Administrator: Windows PowerShell ISE
File Edit View Tools

=T = I

| Untitied,ps1*(Recovered)

Debug Add-ons Help

B >

| Untitleds.ps1*(Recovered)

| Untitied16.ps17{Recovered) AppFinderps1
| Untitied40.pst={Recovered)
| Untitied69.ps1+(Recovered)

| Untitied84,pst=(Recovered)

1 Connect-AzAccount
2

3 Connect-M5Graph

PS C:\WINDOWS\system32> Connect-AzAccount
Get-AzPolicyState | Export-Csv c:\tem
Account

alex.marin

PS €:\WINDOWS\system32> Connect-AzAccount
Connect-MSGraph
Account
alex.marin@

: alex.marir

UPN
TenantId

PS C:\WINDOWS\system32>

Untitled2.ps1*(Recovered)

Untitled7.ps1*(Recovered)

Untitledd6.ps1*(Recovered)
Untitled75.ps1*(Recovered)

Untitled85.ps1*(Recovered)

[- =}
Untitled3,ps1*(Recovered)
Untitled8 ps1*(Recovered)

Untitled21,ps1*(Recovered)

Untitied&1.ps1*{Recovered)

Untitled86.ps1(Recovered)

SubscriptionName

’;__

| Untitled27.ps1*(Recovered)

Untitled52.ps1*(Recovered)

m .

copyfolder.ps1

SearchApplicationGetUninstallKey.ps1

Untitied82.ps1*{Recovered)

Untitled87.ps1*(Recovered)

get-azpolicies.ps1

Untitled58.ps1*(Recovered)

Untitled4.ps1*(Recovered)

Untitled83.ps1*(Recovered)

Untitled88.ps1*

Environment

AzureCloud

Environment

AzureCloud

Untitled5.ps1*(Recovered)

Commands X

Untitled13.ps1*(Recovered) Moduies: | All
Untitled33.ps1*(Recovered) e
Untitled64.ps1*(Recovered)
f A
Add-AppProv ontainer

Untitled89,ps1~

X

Add-AppSharedPackageCantainer
Add-AppvClientConnectionGroup
Add-AppvClientPackage

Add-AppvPuBlishingServer

Add-AppxPackage

Add-AppxProvisionedPackage

Add-Apprvolume

Add-AzADAppPermission

Add-AZADAppPermission

Add-AzADGroupMember

Add-AzADGroupMember
Add-AzAnalysisServicesAccount
Add-AzApiManagementApiToGateway
Add-AzApiManagementApToProduct
Add-AzApiManagementProductToGroup
Add-AzApiManagementRegion
Add-AzApiManagementUserToGroup
Add-AzApplicationGatewayAuthenticationCertificate
Ade-AzApplicationGatewayBackendAddressPool
Add-AzApplicationGatewayBackendHitpSetting

HttpListenerCustomeError
PConfiguration

Ado-AzapplicationGatewsyProbeConfig

Add-AzApplication RedirectConfiguration

Ln 25 Col 25

100%

www.alexandrumarin.com

269

http://www.alexandrumarin.com

Exporting Azure Resource Data

PowerShell enables the extraction of various Azure resource data, such as virtual machines,
storage accounts, virtual networks, and more. Utilize specific cdlets based on the resource
type to retrieve the desired information.

Export virtual machine information
Get-AzVM | Export-Csv -Path "VMInformation.csv" -NoTypelnformation

Export storage account information
Get-AzStorageAccount | Export-Csv -Path "StorageAccountinformation.csv"
-NoTypelnformation

B Administrator: Windows PowerShell ISE - o

File Edit View Tools Debug Add-ons Help

N & B & B > P @ B = | 8 Boo & E.

| Untitled1.ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3.ps1=(Recovered) copyfolder.ps1 Untitled4 ps1+(Recovered) UntitledS ps1*(Recovered) Commands X x
| Untitied6.ps1*{Recovered) | Untitled7 ps1*(Recovered) Untitled8.ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 | Untitled13.ps1*(Recovered) Modules: | Al .
| Untitied16.ps1*(Recovered) AppFinder.pst Untitled21.ps1*(Recoverad) | ntitied27.ps1(Recovered) get-azpolicies.ps1 Untitied33.ps1*(Recovered) | —

| Untitled40.ps1*(Recovered) | Untitied46.psi"iRecovered) | Untitled52,ps1*(Recovered) | Untitied58psi™(Recovered) | Untitled64,ps1"(Recovered) | Untitied6@,ps1™(Recovered)

| Untitied75.ps1"(Recovered) | Untitled81.ps1*(Recovered) | Untitled82 ps1*(Recovered)

StorageAccountinformati... = ol Alexandru Radu Marin - #

| Untitled85.ps1*(Recovered) Untitled86.ps1*(Recovered)
1 # Export virtual machine information File Home Insert Page Layout Formulas Data Review View Help 143 Share < Comments
2 Get-AzW | Export-Csv -Patl -_—
: e v | ==Ea Condionl Farmating - | [1
4 # Export storage account i ﬁj X alibri b, eneral FE Conditional Formatting i 0 @“
Get-AzSt A t | Expd = - AN =~ = Format as Table »
3 eassiorsgsiceont | e o 3 B Iy AKX = [= $ - % 9 | [romstas Table Cells | Editing | Analyze
- e D A v <8 -9 [Cell Styles - = Data
Clipboard [Font &l Alignment Gl Number Styles Analysis ~
Some features might be lost if you save this workbaok in the comma-delimited
o . x
B (i) possiste DATA LOSS {.csv) format. To preserve these features, save it in an Excelfile format, Booit showlagai Savels:

- e Ml < A& | AllowCrossTenantReplication v
c D 3 F G H 1 J K L M B

B InstallShield ;

I AllowCros KeyCreati KeyPolicy SasPolicy Resource(StorageAcid Location Sku Kind Encryptiot AccessTie Creation]
Pl TRUE Microsoft.Azure.Commands.M KeyVaultC avgstorag /subscript eastus ~ Microsoft. StorageV: Microsoft. Cool ssssnhz
alex. marin@caphyon. onmicrosoft. ca 5] Microsoft.Azure.Commands.M cloud-she csb10033f /subscript westeuro| Microsoft. StorageVz Microsoft. Hot

Account i Intel

PS C:\WINDOWS\system32> Connect-A
Connect-MSGraph
Account

alex. marin@caphyon. onmicros

up : allex.marin@caphy
TenantId : 233c9all-laa2-40

PS C:\WINDOWS\system32> # Export
Get-AzWM | Export-Csv -Path "C:\t

Export storage account informat
Get-AzStorageAccount | Export-Csv B DESKTOP-HSQ StorageAccountinformation

PS C:\WINDOWS\system32> W VPER
Completed ditems | Tit

For virtual machine information, we use the Get-AzVM cmdlet to retrieve details about all
virtual machines in the current Azure subscription. We then pipe the output to the Export-Csv
cmdlet, which writes the data to a CSV file named VMInformation.csv. The
-NoTypelnformation parameter omits the data type information from the CSV file.

Similarly, for storage account information, we use the Get-AzStorageAccount cmdlet to fetch
details about all storage accounts in the current Azure subscription. The output is piped to
the Export-Csv cmdlet, which exports the data to a CSV file named
StorageAccountinformation.csv. The -NoTypelnformation parameter ensures that data type
information is excluded from the CSV file.

www.alexandrumarin.com 270

https://learn.microsoft.com/en-us/powershell/module/az.compute/get-azvm?view=azps-10.2.0
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-csv?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/az.storage/get-azstorageaccount?view=azps-10.2.0
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-csv?view=powershell-7.3
http://www.alexandrumarin.com

Automating Tasks with PowerShell

Task Automation Concepts

The process of using scripts or commands to streamline repetitive or time-consuming tasks
is known as task automation. Automation becomes more accessible and efficient by
leveraging PowerShell's scripting capabilities, resulting in increased productivity and reduced
human error.

PowerShell's versatility and cross-platform support are two of its key advantages for task
automation. PowerShell can interact with a wide variety of systems, technologies, and APIs,
making it an effective tool for automating tasks in a variety of environments such as
Windows, Linux, and cloud platforms such as Azure. Furthermore, PowerShell's access to
various system resources, such as files, directories, registry settings, and network services,
enables automation scenarios that cover a wide range of IT management issues.

PowerShell task automation revolves around writing scripts that contain a series of cmdlets,
functions, or commands. The rich library of built-in cmdlets in PowerShell, as well as the
ability to create custom functions, allow users to automate a wide range of tasks, from
simple administrative tasks to complex workflows. PowerShell automation can save a lot of
time and effort, especially when dealing with repetitive tasks. It frees up IT professionals and
developers to focus on more strategic and creative aspects of their work rather than manual,
mundane tasks.

Furthermore, PowerShell's ability to efficiently handle bulk operations makes it well-suited for
tasks that require processing large amounts of data, such as log analysis or reporting.

Users can create powerful automation solutions that span multiple systems and services by

integrating PowerShell with other tools and technologies such as Active Directory, Microsoft

Office applications, and cloud services.

Suppose we have a CSV file named "users.csv" with the following format:

Name,Username,Password,Department
John Doe,johnd,P@sswO0rd123!,IT
Jane Smith,janes,P@ssw0rd456!,HR

Now, we can create a PowerShell script to read the CSV file, extract the user information, and
create user accounts in Active Directory:

Import the Active Directory module
Import-Module ActiveDirectory

www.alexandrumarin.com 271

http://www.alexandrumarin.com

Read the CSV file and create user accounts
Susers = Import-Csv "users.csv"

foreach (Suser in Susers) {
Sname = Suser.Name
Susername = Suser.Username
Spassword = ConvertTo-SecureString Suser.Password -AsPlainText -Force
Sdepartment = Suser.Department

Create the user account
New-ADUser -Name $name -SamAccountName Susername -AccountPassword
Spassword -Enabled Strue -Department Sdepartment

}

The script in this example imports the Active Directory module and reads user information
from the "users.csv" file. It then loops through each row in the CSV file, extracting the
information needed to create the user account. The New-ADUser cmdlet is used to create a
user account in Active Directory by passing parameters like name, username, password, and
department.

www.alexandrumarin.com 272

https://learn.microsoft.com/en-us/powershell/module/activedirectory/new-aduser?view=windowsserver2022-ps
http://www.alexandrumarin.com

Scheduling PowerShell Scripts

Scheduling PowerShell scripts is an important part of task automation because it allows you
to automate repetitive tasks, run scripts at specific times, and keep a consistent workflow.
PowerShell scripts can be scheduled locally using Windows' built-in Task Scheduler or
remotely using services such as Azure Automation.

Task Scheduler

Task Scheduler is a native Windows application that allows you to create, configure, and
manage scheduled tasks. To schedule a PowerShell script using Task Scheduler, you need to
create a new task, specify the script's path, set the trigger (e.qg., daily, weekly, or at logon),
and configure any necessary settings like user privileges and conditions.

Let's say you have a PowerShell script called "MyScript.ps1" located at
"C:\Scripts\MyScript.ps1", and you want to run it daily at 10:00 AM.

You can create the Task Scheduler task using PowerShell with the following script:

Define the task name and script path
StaskName = "My Daily Script"
SscriptPath = "C:\Scripts\MyScript.ps1"

Create a new trigger to run daily at 10:00 AM
Strigger = New-ScheduledTaskTrigger -Daily -At 10:00AM

Create the action to run the PowerShell script
Saction = New-ScheduledTaskAction -Execute "powershell.exe" -Argument
"-ExecutionPolicy Bypass -File “"SscriptPath™

Register the task with the Task Scheduler
Register-ScheduledTask -TaskName StaskName -Trigger Strigger -Action Saction -User
"USERNAME" -Password "PASSWORD" -RunLevel Highest -Force

Before running the script, make sure to replace "C:\Scripts\MyScript.ps1" with the actual
path to your PowerShell script. Also, update the USERNAME and PASSWORD with the
credentials of the user account that should run the task. Note that the user must have
sufficient permissions to execute the script and access any required resources.

When you run this script, it will create a new Task Scheduler task named "My Daily Script”
that runs daily at 10:00 AM. The task will execute the specified PowerShell script, bypassing
the execution policy to allow running unsigned scripts.

www.alexandrumarin.com 273

http://www.alexandrumarin.com

Azure Automation

Azure Automation is a Microsoft Azure cloud-based service that allows you to automate and
schedule the execution of PowerShell scripts in the cloud. To schedule a PowerShell script in
Azure Automation, complete the following steps:

In the Azure portal, create a new Automation Account. This account will be the central
location for all your automation scripts.

A O\ Automation Accounts - Microse! X+
< C m () htipsy/portal.azure.com/#view/HubsExtension/BrowseReso esourceType/Microsoft Automation%2FAutomationAccounts 53] G = @

Microsoft Azure P Search resources, services, and docs (G+/) alex.maring

Automation Accounts

Create Recover delated accounts. Manage view Refresh < ExporttoCs open query | @

Fitter f field Subscription equals all Resource group equals all % Location equals all X * add filter

Showing 0 to 0 of 0 records. No grouping < | [55 List view

Name 1 Type o Resource group T4 Location T4 Subscription 1.,

No automation accounts to display

Try changing or clearing your filters.

Inside the Automation Account, create a new runbook. A runbook is a PowerShell script that
you want to automate.

www.alexandrumarin.com 274

http://www.alexandrumarin.com

\ testautomation - Microsoft Azur X =+

B
< G @ 5]

portal.azure.com/#

Microsoft Azure

® testautomation | Runbooks »
L

Create a runbook
Overview
Activity log

Access control (1AM)

P Search resources, services, and docs (G+/)

Import a runbook W Browse gallery (' Leam more Feedback () Refresh

G = @

alexmarinG

® s 0

@ Ty the new Azure Automation Extension to create and manage runbooks using Visual Studio Code. Download the extension from Visual Studio Marketplace. For more information, see Azure Automation extension.

Tags.
Diagnose and salve problems

Process Automation

runbooks.

Showing 1 to 2 of 2 records.

Name 14 Authoring status

Runbook type : All

T

Runbook type

Authoring Status : All

N

Runtime version

T4 last modified

®

AzureAutomationTutorialWithid.. @ Published PowerShell 5.1 7/31/2023, 11:57 PM

&% Runbooks
H Jobs

Hybrid worker groups

AzureAutomationTutorialWithid... @ Published Graphical Powershell 51 7/31/2023, 11:57 PM

Configuration Management

& Inventory

By Change tracking

B state configuration (DSC)
Update management

B update management
Shared Resources

@ schedules

B Modules

Python packages

Credentials

L4
7
& Connections
-

Certificates

Jx Variables

In the runbook, write the PowerShell script that you want to execute. For example, you can
have a script that starts and stops virtual machines, configures resources, or performs any
other tasks you need.

A [\ Edit PowerShell Runbook® - Mic X+
<« cn o =

alex.marint

portal.azure.com/#vie zure_Automat extualAuthoring! space. ew/ru e bscriptions' b6-16 4

= Microsoft Azure P search resources, services, and docs (G+/) @ A

Edit PowerShell Runbook*

testrunbook

Save Publish Test pane Edit in VS Code Feedback

$ResourceGrouphame = vault”
> BB CMDLETS

¥ &% RUNBOOKS $connection = Get- tion -Name “AzureRunAsConnection”

Connect-AzAccount -ServicePrincipal -Tenant $connection.TenantID -ApplicationId $conn

utomationConn

_ApplicationID -CertificateThumbprin
‘AzureAutomationTutorialWithide...

AzureAutomationTutorialWithide... $vms = Get-AzVM -ResourceGroupName $ResourceGrouphame | Where-Object { $_.PowerState -eq 'V r

testrunbook
$vms) {

-ResourceGroupName $ResourceGroupName -Name $vm.Name -Force

($vm

> & ASSETS Stop-AzuM

www.alexandrumarin.co

http://www.alexandrumarin.com

Cron Jobs

Cron jobs can be used to schedule PowerShell scripts on non-Windows platforms such as
Linux and macOS. Cron is a time-based job scheduler found in Unix-like operating systems
that allows you to run scripts at predefined intervals or on predefined dates and times. You
can also automate PowerShell script execution on these platforms by configuring a Cron job.

You can pass parameters to PowerShell scripts when scheduling them to customize their
behavior at runtime. This is useful when reusing the same script with different inputs or
when adjusting the script's behavior based on the schedule.

In scheduled tasks, it is critical to implement robust error handling mechanisms. Scheduled
tasks may run unattended, and errors may occur for a variety of reasons, such as
connectivity issues or a lack of resources. Implementing proper error handling and logging
ensures that any problems are captured and reported, allowing you to take appropriate
action if necessary.

Consider the security implications of running tasks with elevated privileges or accessing
sensitive resources when scheduling PowerShell scripts. Ascertain that the scheduled tasks
have the appropriate permissions and credentials to carry out their intended actions. Avoid
directly storing sensitive information such as passwords in the script and instead use secure
methods such as using encrypted variables or accessing credentials from a secure vault.

www.alexandrumarin.com 276

http://www.alexandrumarin.com

PowerShell Tips and Tricks

Optimizing PowerShell Performance

PowerShell performance can be optimized to make your scripts faster and more efficient.

Avoiding unnecessary loops, which can slow down script execution, is a key strategy.
Instead, for more efficient data retrieval, use advanced pipeline techniques and cmdlets that
support the "-Filter" parameter.

When working with large objects, another way to improve performance is to select only the
properties you require. Reduce the amount of data you manipulate to save memory and
speed up processing. Measuring script execution time is critical for identifying potential
bottlenecks. The "Measure-Command" cmdlet evaluates the time required to execute a
specific script block, providing insight into areas that require optimization.

Understanding PowerShell's underlying data structures can also be beneficial. Using arrays
and hash tables efficiently, for example, can have a significant impact on performance. You
can use PowerShell's data manipulation techniques, such as iterating through arrays and
filtering data, to speed up your script.

In summary, optimizing PowerShell performance involves streamlining your scripts by
avoiding unnecessary loops, selecting specific properties, and measuring execution time.
Familiarity with advanced pipeline techniques and data manipulation can significantly
improve the efficiency and responsiveness of your PowerShell scripts.

www.alexandrumarin.com 277

http://www.alexandrumarin.com

Using Regular Expressions in PowerShell

Regular Expression, also known as "regex" or "regexp," is a powerful tool used to manipulate
and search for patterns in strings in various programming languages and text-processing
tools. It is a succinct and adaptable way of describing specific text patterns that you want to
match within a larger body of text.

Regex allows you to define complex patterns for matching strings by combining literal
characters, metacharacters, and quantifiers. These patterns can range from finding a
specific word or character in a text to extracting structured data from unstructured text.
Assume you have a list of email addresses and want to find all of the addresses that belong
to a specific domain. You can use regex to create a pattern that matches the domain name
in each email address and efficiently extract the desired information.

Regex is commonly used for data validation, text search and replace, data extraction, and
input validation. It is a valuable tool for developers, sysadmins, and anyone working with
textual data because it provides a concise and powerful way to perform sophisticated string
manipulations.

Regex, on the other hand, can be difficult to learn due to its compact syntax and the
numerous special characters involved. Because different programming languages and tools
may support regex in slightly different ways, it's critical to refer to the specific
implementation when working with regex in different contexts. To work with regex in
PowerShell, you can use built-in operators such as -match, -replace, and -split. These
operators assist you in determining whether a string matches a pattern, replacing text based
on a regex pattern, and splitting a string into an array using a regex delimiter.

To create a regex pattern, you define a sequence of characters that describe the rules for
matching. For example, \d+ matches one or more digits in a string. Some characters, called
metacharacters, have special meanings in regex. To match a literal metacharacter, you
escape it with a backslash.

To specify the position of a match in a string, anchors and boundaries are used. For
example, * matches the beginning of a line and $ matches the end of a line. b corresponds to
word boundaries. Character classes enable you to define a set of characters that correspond
to a single character in a string. [aeiou] matches any vowel, for example. Parentheses are
used for grouping and capturing (). They enable you to write subexpressions that extract
specific parts of a matched string. Quantifiers indicate the number of times a character or
group should be matched. For example, the symbol * matches zero or more occurrences, the
symbol + matches one or more occurrences, and the symbol ? matches zero or one
occurrence.

You can use regex options to modify pattern matching behavior, such as IgnoreCase for
case-insensitive matching and Multiline for changing how * and $ anchors behave.

www.alexandrumarin.com 278

http://www.alexandrumarin.com

Many PowerShell cmdlets include regex as part of their parameters, allowing you to perform
advanced text-based operations. For example, the Select-String cmdlet searches for patterns
in files using the -Pattern parameter. Regex pattern testing and debugging are critical,
especially for complex patterns. Regex testers and validators, for example, can help you
quickly test and refine your patterns. Keep in mind that, while regex is powerful, complex
patterns can be difficult to read and understand. For better readability and maintainability,
divide the pattern into smaller parts and use comments to explain each component.

For example:

Spattern = "\d{2}-\d{2}-\d{4}'

Sinput = "Today's date is 05-18-2023"
Smatches = [regex]::Matches(Sinput, Spattern)
Smatches.Value # Output: 05-18-2023

B Administrator: Windows PowerShell ISE - o x|
File Edit View ITools Debug Add-ons Help

I~ = I [ERPN) B = |8 |B5o0o0 &0.

| Untitied ps1*(Recovered) Untitled2.ps1*(Recovered) Untitled3,ps1*(Recovered) copyfolder.ps1 Untitled4.ps1*(Recovered) UntitledS.ps1*(Recovered) Commands X X
| Untitled6.ps1*(Recovered) Untitled7.ps1*(Recovered) Untitled8 ps1*(Recovered) SearchApplicationGetUninstallKey.ps1 Untitled13.ps1*(Recovered) Modules: | All v

| Untitied16.ps1=(Recovered) AppFinderpsl Untitied21,ps1-{Recovered) | Untitied27.ps1*(Recovered) get-azpolicies.ps1 Untitled33.ps1*(Recovered) e

| Untitiedd0.ps1*{Recovered) | Untitled46.ps1*(Recovered) | Untitled52.ps1*(Recovered) | Untitled58 ps1i(Recovered) | Untitled64 psi*(Recovered) | Untitled69.ps1*(Recovered)

| Unfitled75.ps1(Recovered) | Unitied81.psT™(Recovered) | Untitled82,ps1*(Recovered) | Untitied83.ps1™(Recovered) | MyMathiodulepsm1 | Untitled84.ps1*(Recoversd) Ade-AspProvsionedsharedPackageContaner

| Untitled85.ps1°(Recovered) | Untitied86.psi*(Recovered) | Untitled37.ps1"(Recovered) | Untitied88ps1® | Untitled89.ps1* | Unlitled90.ps1® | UntitledS1pst™ X Ado-AppSharedPackageCantainer
1 Spattern = "\d{2}-\d{2}-\d{4}" Ada-AppyClientConnectionGroup
2 Sinput = "Today's date is 05-18-2023" Add-AppvClientPackage
3 $matches = [regex]::Matches(Sinput, Spattern)
4 $matches.value # Output: 05-18§-2023 Ada-AppvPuBlishingServer
5 Adc-ApprPackage

Add-AppxProvisionedPackage

Add-Appxvolume

Ade-AzADAppPermission

Add-AzADAppPermission

Add-AzADGroupMember

Add-AzADGroupMember

Ada-AzAnalysisServicesAccount

Add-AzApiManagementApToGateway

Add-AzApiManagementApiToProduct

Add-AzApiManagementProductToGroup

Add-AzApiManagementRegion

Add-AzApiManagementUserToGroup
stewayAuthenticationCertificate

BackendAddressPool

BackendHitpSetting

PS C:\WINDOWS\system32:»

Adg-AzAppiicationGatewsyBackendSetting
Add-AzApplicationGatewayCustomError

Add-AzApplicationGatewaylPConfiguration
Add-AzApplicationGatewayListener

Add-AzApplication ProbeCenfig

Add-AzApplication RedirectConfiguration

Ln8 Col 25 100%

www.alexandrumarin.com 279

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string?view=powershell-7.3
http://www.alexandrumarin.com

PowerShell Remoting and Sessions

PowerShell Remoting and Sessions allow you to execute commands on remote computers,
making it possible to manage distributed systems more efficiently. This feature is useful
when performing tasks on multiple machines at the same time or accessing systems that
are not physically accessible.

You must first enable PowerShell Remoting on the remote machines before you can use it.
PowerShell Remoting is disabled by default, so you must enable it manually or through
Group Policy.

The Enter-PSSession and New-PSSession cmdlets are used to launch a remote session.
Enter-PSSession allows you to run commands on the remote computer interactively,
whereas New-PSSession creates a persistent session for running multiple commands
without user interaction.

Here's an example of using Enter-PSSession:

Enter-PSSession -ComputerName "Server01"
Get-Process
Exit-PSSession

And here's an example of using New-PSSession:

Ssession = New-PSSession -ComputerName "Server01"
Invoke-Command -Session Ssession -ScriptBlock { Get-Process }
Remove-PSSession S$session

Once you have an active remote session, you can use the Invoke-Command cmdlet to run
scripts or commands on the remote machine. The -Session parameter specifies the session
on which the command should be executed.

Passing variables, objects, and even functions to remote sessions is supported by
PowerShell Remoting, allowing for seamless data exchange between local and remote
machines. You can use the fan-out approach, which uses parallel remoting sessions with the
Invoke-Command cmdlet, to work with multiple remote computers at the same time. When
dealing with large-scale operations, this technique aids in increasing efficiency.

Background jobs for remote commands are also supported by PowerShell. You can run
remote tasks in the background by using the -AsJob parameter with Invoke-Command,
allowing you to continue working on other tasks locally.

www.alexandrumarin.com 280

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enter-pssession?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssession?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command?view=powershell-7.3
http://www.alexandrumarin.com

Security is another critical aspect of PowerShell Remoting. By default, remote commands
are executed in a restricted environment, protecting the remote computer from any harmful
or unintended operations.

To end a remote session, use the Remove-PSSession cmdlet, making sure that all resources
are released properly.

www.alexandrumarin.com 281

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/remove-pssession?view=powershell-7.3
http://www.alexandrumarin.com

PowerShell Splatting

PowerShell Splatting is a technique that allows you to simplify and improve the readability of
your PowerShell scripts by passing parameters to cmdlets or functions using a hash table.
Instead of specifying each parameter and its value directly in the command, you define the
parameters in a hash table and then expand the hash table into the command using the
"splatting" operator (@).

The basic syntax of splatting involves creating a hash table where the keys are the
parameter names and the values are the parameter values. For example:

Sparameters = @{
Parameter1 = "Value1"
Parameter2 = "Value2"
Parameter3 = "Value3"

Invoke-Command @parameters

In this example, we define a hash table Sparameters with three keys (Parameter1,
Parameter2, and Parameter3) and their corresponding values (Value1, Value2, and Value3).
We then use splatting to pass these parameters to the Invoke-Command cmdlet.

Splatting becomes especially useful when you have a large number of parameters or when
you want to make your script more readable and maintainable. It helps avoid long and
complex command lines and makes it easier to update or modify parameters in the future.

Another advantage of splatting is that you can dynamically build the hash table and include
only the parameters that are relevant to your current task. For instance:

Sparameters = @{}
Sparameters['Parameter1"] = "Value1"
Sparameters['Parameter2"] = "Value2"

if (SsomeCondition) {
Sparameters['Parameter3"] = "Value3"

Invoke-Command @parameters

In this example, we create an empty hash table Sparameters and then conditionally add
parameters based on the value of $SsomeCondition. This flexibility allows for more dynamic
and flexible script design.

www.alexandrumarin.com 282

http://www.alexandrumarin.com

You can also use splatting with cmdlets that have positional parameters by specifying the
parameter position as the key in the hash table. This way, you don't need to know the

parameter name, and the order of the parameters in the hash table determines their position
in the command.

Sparameters = @{
0 ="Valuel”"
1 ="Value2"

Set-Content @parameters -Path "C:\example.txt"

www.alexandrumarin.com 283

http://www.alexandrumarin.com

Conclusion

As | come to the end of this book, | can't help but feel a sense of gratitude and awe for the
incredible journey we've taken together through the vast world of PowerShell. From the very
beginning, we embarked on a mission to harness the power of this versatile scripting
language and delve into its boundless potential.

Throughout these pages, we've explored the art of automation, mastering the ability to
transform repetitive tasks into elegant scripts that dance at our command. We've ventured
into the heart of Azure, learning to wield the might of the cloud through PowerShell,
managing resources, and orchestrating the wonders of the cloud with precision and finesse.

Together, we've built an unbreakable bond with the PowerShell Integrated Scripting
Environment (ISE), uncovering its hidden gems and revealing its secrets that make our
coding experience seamless and delightful. We've embraced Visual Studio Code,
customizing it with the PowerShell extension, a dynamic duo that makes coding an
enchanting experience.

With PowerShell modules at our disposal, we've expanded our horizons and tapped into a
treasure trove of functionalities, integrating third-party libraries to augment our scripts and
take our creations to new heights. Through these modules, we've connected with Active
Directory, Azure, and more, each interaction forging a stronger connection to the world
around us.

As we delved into the realm of GUI development, we gave life to our scripts, creating
immersive experiences for users, complete with captivating forms, dialog boxes, and
responsive interfaces. From Forms to WPF and beyond, we explored the art of visualization
and empowered our scripts with unparalleled interactivity.

Through PowerShell, we've embraced the magic of regex, unlocking the true power of pattern
matching and transforming our data manipulation endeavors into breathtaking symphonies
of logic and precision. The PowerShell Remoting and Sessions chapter has taught us the art
of reaching out and connecting with remote machines, blurring boundaries and bringing
people together, no matter where they may be.

With PowerShell as our trusty guide, we navigated the complexities of Group Policy, delving
into the heart of Windows management, and ensuring that our systems are in perfect
harmony. We've honed our skills in task automation, scheduling our scripts to weave their
magic without us lifting a finger.

As we approach the end of this incredible journey, | want to extend my heartfelt gratitude to
you, dear reader. You've been my partner in this odyssey of scripting, discovery, and
empowerment. Together, we've embraced the art of PowerShell, and | hope this book has
ignited a flame of passion within you for this extraordinary language.

www.alexandrumarin.com 284

http://www.alexandrumarin.com

Remember, the possibilities with PowerShell are infinite, limited only by your imagination. As
you continue your journey beyond these pages, know that you hold the key to automation, the
catalyst for innovation, and the power to shape your digital world.

Go forth with confidence, wield your scripts like a virtuoso, and continue to explore the
wondrous realm of PowerShell. The adventure has only just begun, and | can't wait to see the
remarkable creations you'll bring to life.

Thank you for being a part of this incredible experience. Happy scripting, my friend!

With warmest regards,
Alex Marin

www.alexandrumarin.com 285

http://www.alexandrumarin.com

