ADVANCED
TECHNIQUES IN

MSI

PACKAGING

AAAAAAAAA

EEEEEEEEE

Introduction
What is MSI packaging?
What is the structure of an MSI?

The Difference Between Application Packaging and Repackaging

Application Repackaging with Transforms
Application Repackaging via Snapshot Method

Application Repackaging via PowerShell App Deployment Toolkit

Advantages of Application Repackaging
Preparing for MSI Packaging
Understanding Application Dependencies
What are Application Dependencies?
Assessing Application Compatibility

Assessing the compatibility of the VLC Media Player application

Per-user versus Per-machine installations
What are per-user installations?
What are per-machine installations?

Way forward for your installer

Repackaging the Application Using Repackager

What is Application Repackaging

Preparing for Repackaging

Capturing an Application with Repackager
Introduction to Repackager
What is the SnapShot Method ?
What is Session Monitoring ?
Repackager settings
Capture cleanup
Practical repackaging example on VLC Media Player

Further application customization

Advertised Shortcuts
Significance of Advertised Shortcuts
What is Self-Healing

Properties in MS| Packaging

Custom vlc settings

Custom settings implementation in the package
Scenario one: Advertised shortcuts
Scenario two: Active Setup

Registry classes
“COM” Registry

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Interfaces
Type Libraries
File Type Associations
Manipulating of registry classes with Advanced Installer
COM Page
COM Properties
COM ActiveX Properties
DCOM Properties
Interface Properties
Type Libraries
COM+
File Associations Page
Advanced MSI Packaging Techniques
Custom actions
Dehardcode within files
How to Discover Hard-coded Files?
Delete empty directory
Delete empty directories with Custom Actions
Delete with VBScript
Delete with PowerShell
Delete empty directories with Advanced Installer
Process handling
Terminate Process in Advanced Installer
Terminate Process with VBScript
Terminate Process with PowerShell
Particular Terminate Process Scenario
Detect Process in Advanced Installer
Detect process with VBScript
Detect Process with PowerShell
Wait for Process with VBScript
Wait for Process with PowerShell
Firewall
Firewall rules with VBScript
Install/uninstall driver
DPInst
PnPULIl
Installing drivers with VBScript
Installing drivers with PowerShell
Installing drivers with Advanced Installer

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

78
80
81
85
87
88
90
92
93
95
97
98
102
102
105
105
113
113
114
116
117
119
119
120
123
125
129
130
132
134
135
135
136
144
144
144
145
152
156

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Install Unsigned Drivers
Create a digital certificate by using the MakeCert tool
Create a .cat (catalog) file for the driver
Sign the catalog file using SignTool
Export the certificate from certstore manually
Install the certificate to Root and TrustedPublisher
Build the MSI
Installing unsigned drivers with Advanced Installer
DLL/OCX register/unregister
What is the Regsvr32 tool?
How to Register DLL/OCX with VBscript?
How to Register DLL/OCX with PowerShell?
How to Register DLL/OCX with Advanced Installer?
Write line in hosts file
Write in hosts file with VBScript
Write in hosts file with PowerShell
Working with Conditional Statements
Component Conditions
Launch Conditions
System Launch Conditions
Software Launch Conditions
Custom Launch Conditions
Custom Actions as Conditional Statements
Working with Dependencies
Creating Transform Files
Click-Once Apps
What are the challenges of repackaging a ClickOnce application?
How to Repackage ClickOnce Applications?
How to adjust the package?
Introduction to Services
Understanding Services in MSI
Benefits of Using Services in MSI
Creating and Configuring Services in MSI
Creating and configuring services with Advanced Installer
Service Installation
Control and Configure Operations
Failure Operations
Service Example
Introduction to MSI Upgrades

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

157
158
160
162
163
164
165
168
170
170
172
175
178
179
180
181
183
184
190
191
191
193
194
197
201
202
202
203
205
210
210
21
21
212
213
215
219
221
224

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

What is an MSI Upgrade?
Patch vs upgrade
Example patch for VLC
Package Deployment
Command lines
MSI Command Lines
PowerShell Command Lines
VBScript Command Lines
Deploy with SCCM
Deploy MSI via SCCM
Deploy EXE/VBscript/PowerShell via SCCM
Deploy with Intune
Deploy MSI via LOBA
Deploy EXE/VBScript/PowerShell via Win32
Final Words
About the Author

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

224
225
227
235
235
235
237
238
241
242
246
257
259
266
282
283

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Introduction

Welcome to “MSI Packaging In-Depth,” the definitive guide to building robust and secure
installation packages. This book builds upon the foundation laid by “Application Packaging
Essentials” providing an in-depth exploration of the MSI packaging process and its many
intricacies.

In this book, we delve into advanced topics such as custom actions, dependencies, and
repackaging, providing practical insights and real-world examples to help you navigate the
complexities of the MSI packaging process. With expert guidance and a wealth of knowledge at
your fingertips, you'll be well-equipped to tackle even the most challenging packaging scenarios.

To get started, download Advanced Installer’s 30-day full-featured free trial.

Designed for IT professionals and experienced packagers, “MS| Packaging In-Depth” is an
essential resource for anyone looking to master the art of installation package creation. Join us
as we explore the full potential of MSI packaging and unlock its many secrets.

What is MSI packaging?

MSI packaging plays an essential role in the application deployment and installation process,
and IT professionals must understand this technology well in order to produce reliable, fast, and
scalable installation packages.

As outlined in the MSI Packaging Essentials, the process of creating an MSI package involves
capturing the files, registry settings, and other components of an application and organizing
them into a standardized format to be installed on target systems.

Quite often, the package may include customizations, such as configuring the application to run
in a particular environment, adding features or functionality, or applying patches or updates.

However, creating a dependable and effective MSI package involves more than simply capturing
the files and registry settings. IT professionals need to be knowledgeable with a variety of tools
and technologies, including, but not limited to, the Windows Installer service, MSI tables,
command-line switches, and scripting languages.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 6

https://www.advancedinstaller.com/application-packaging-training/msi/ebook.html
https://www.advancedinstaller.com/application-packaging-training/msi/ebook.html
https://www.advancedinstaller.com/download.html
https://www.advancedinstaller.com/application-packaging-training/msi/ebook.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

When developing MSI packages, IT professionals must follow best practices and industry
standards, such as thoroughly testing the packages on various system configurations, using
standard syntax and scripting languages, and documenting the package.

Imagine, for a second, an application packaging industry without best practices and industry
regulations. What would it look like?

We'd likely see a chaotic and inefficient industry where each application packager would use
different tools, methods, formats, and standards to create installation packages for Windows
applications.

It would become a risky and unreliable industry where the quality and compatibility of the
packages would vary widely, leading to errors, failures, conflicts, and security breaches during
installation and operation.

Imagine this costly and wasteful industry where the packagers would spend more time and
resources on troubleshooting, fixing, and updating the packages than on innovating and
improving them.

Moreover, we'd be faced with a fragmented and isolated industry where the packagers would
have no common platform or mechanism to share, learn from, or collaborate with each other or
with other stakeholders in the IT ecosystem.

In short, it would be an industry that would fail to meet the needs and expectations of its
customers, users, and society at large.

That is why best practices and industry regulations are essential for the application packaging
industry to thrive and deliver value in the digital era.

And that's precisely why we're embarking on this journey once again: to gather and organize all
our accumulated knowledge—both standard regulations and best practices. Our aim is to create
an extensive resource that all application packagers can turn to whenever they need guidance.

Furthermore, IT professionals must stay current on the latest trends and technologies in MSI
packaging, such as the use of custom actions, launch conditions, and transform files, among
other things. By staying current with these technologies, IT professionals may design tailored,
efficient, and reliable installation packages that can be simply delivered to target systems.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 7

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

What is the structure of an MSI?

MSI (Microsoft Installer) is a Microsoft Windows software installation package format. It is
intended to make installing, configuring, and removing software applications on Windows
machines easier.

An MSI package is, at its core, a database that contains all of the information required to install
and configure a software application. This information includes installation files, registry
settings, environmental variables, and other configuration options. The Windows Installer
service, which is in charge of managing software installation and removal, can read and process
the MSI package thanks to its design.

The MSI database is made up of several different tables that are used to store the various
package components:
e The File Table: contains information about the files that will be installed,
e The Component Table: describes the individual components of the application,
e The Feature Table: defines the features and options that will be available during the
installation process.

The advantage of the MSI database format is its capacity to standardize and streamline the
software installation and configuration process. Developers can ensure that their applications
are installed and configured correctly across diverse Windows systems by using this common
package format and structure. Additionally, the database format supports advanced features
such as rollback and error handling, enhancing the smoothness of installations and facilitating
the resolution of any arising issues.

What is Msiexec.exe?

Msiexec.exe, a command-line tool that the Windows Installer service uses, is a crucial part of
the Windows Installer technology. This tool is used to install, configure, and uninstall software
on Windows systems. It is a key component of the Windows Installer technology, which enables
standardized and consistent software installation and configuration.

e When an MSI package is executed, the msiexec.exe executable file reads and interprets
the information stored in the MSI database before installing or uninstalling the
application.

e When you run the msiexec.exe file, it reads the package header information from the MSI
database to determine the basic properties of the package, such as the product name,

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 8

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

version number, and vendor. It then processes the database's various tables and
components to determine whether the application should be installed or removed.

The first step in the installation process is to determine which application components must be
installed. This is accomplished by inspecting the MSI database's Component table and
determining which components are marked for installation. After identifying the required
components, the msiexec.exe file copies the necessary files and registers any required DLLs or
other system components.

During the installation process, the msiexec.exe file consults the MSI database's various tables
and components to determine the appropriate configuration options and settings for the
application. This information includes registry settings, environmental variables, and other
database-specified configuration options.

The msiexec.exe file can be used to remove or repair existing installations in addition to
installing applications. When an MSI package is launched with the /uninstall switch, for
example, the msiexec.exe file will use the information in the MSI database to remove all of the
application's components and files.

Overall, the MSI database format is a necessary part of modern Windows software installation
and management. The MSI format ensures that applications are installed and configured
correctly by providing a standardized and structured approach to software installation, which
can help IT professionals and end users alike reduce issues and support costs.

The MSI structure is covered more in-depth in our first MSI Packaging Essentials ebook.

The Difference Between Application Packaging
and Repackaging

Packaging and repackaging are two key principles in application deployment and installation.
While both of these processes are necessary for developing reliable and efficient installation
packages, they take different approaches and different factors into account.

Application packaging refers to creating an installation package from scratch, including the
application files, registry settings, and other components required for the application to execute

properly.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

https://www.advancedinstaller.com/application-packaging-training/msi/ebook.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Typically, the application packaging process involves using a specialized tool like Advanced
Installer to capture the required files and settings. These are then organized into a package
format, such as MSI, and the installation procedure on the target system is specified.

Ensuring the package includes all necessary components, is compatible with the target system,
and can be installed smoothly and without conflicts is of utmost importance during the
packaging process.

In contrast, application repackaging involves modifying an existing installation package to meet
specific criteria. This method is commonly used when an existing package needs to be updated,
modified, or customized to align with the requirements of a particular environment or system
configuration.

Repackaging encompasses various actions such as modifying packages to delete or add
components, changing registry settings, and applying patches or updates to existing packages.
Creating packaging from scratch is often less complex than application repackaging, as it
requires a deep understanding of the existing package, its components, and the tools and
technologies involved in its production.

Repackaging involves several procedures and considerations. One of the initial tasks is to
analyze the existing package, understanding its components and dependencies. To inspect and
make alterations to the contents of the package, you may need to utilize specialized tools like
the Advanced Installer tool. During this phase, it is crucial to identify any potential issues or
conflicts that may arise when updating the package. These could include missing dependencies
or incompatibility with the target system.

Once the existing package has been analyzed, IT professionals can begin the re-packaging
process, which can be separated into two areas:

e Repackaging via transform files

e Repackaging via Snapshot method

Application Repackaging with Transforms

The practice of adapting or updating existing installation packages to fit specific criteria is
known as application re-packaging. Transforms, which are adjustments to an existing package
that are implemented during installation without affecting the original package itself, are one
technique for re-packaging.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 10

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Transforms can be made with specialist tools like the Advanced Installer's built-in Transform
Maker and can include changes to registry settings, file locations, or other package
components.

After creating the transform file, it may be applied to the existing package during installation
using the proper command-line switches or deployment tools.

To apply the transformation file to the existing package, you have a variety of techniques at your
disposal, such as command-line tools, batch scripts, and deployment tools. It is critical to
extensively test the changed package to ensure that it installs and works well on the target
system and does not cause new problems or conflicts.

One of the benefits of employing transforms for application re-packaging is that they do not
modify the original package; thus, it remains unchanged and can be updated or modified in
the future.

We will dive into this topic a few chapters later in the book.

Application Repackaging via Snapshot Method

Another approach to application re-packaging is the snapshot method. This method involves
producing a new installation package by capturing the changes made to an existing installation
on a test machine.

The snapshot approach captures changes to the file system, registry settings, and other
application components during the installation process. It then creates a new package that can
be further customized or deployed on other systems.

To use the snapshot method for application re-packaging, we need to prepare a test system with
the present installation package and any prerequisites or dependencies. The modifications
made to the system throughout the installation process are then captured using a snapshot
tool. When the snapshot is finished, the captured changes are used to create a new package,
which can then be customized further or deployed on other systems.

One advantage of the snapshot method is that any modifications made to the system during
installation are captured and can be included in the new package.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 11

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Furthermore, because the installation process can be captured and packaged, the snapshot
method can be used to package applications that do not have an existing installation
package.

Packaging and repackaging both necessitate a thorough understanding of the techniques and
technology employed in the application packaging process.

A solid understanding of MSI, the Windows Installer service, and the tools used to create and
modify packages is essential. Understanding the target system and the program's needs is
crucial. It is equally important to consider how the application will be installed and configured on
the target system.

Application Repackaging via PowerShell App Deployment Toolkit

As mentioned in MSI Packaging Essentials ebook, the PowerShell App Deployment Toolkit
(PSADT) is a free and open-source framework designed to make enterprise application
deployment tasks easier. It was created by Microsoft MVPs and is compatible with PowerShell
3.0 and higher.

: PS App Deploy Toolkit Main 3.9.2

} PSAppDeployToolkit

The following application is about to be installed:

PS App Deploy Toolkit Main 3.9.2

You can choose to defer the installation until the deferral expires:
Remaining Deferrals: 3

Cnce the deferral has expired, you will no lenger have the option to defer.

Defer Continue

The PowerShell App Deployment Toolkit includes a set of functions and tools for easily
deploying and managing applications across multiple systems.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 12

https://www.advancedinstaller.com/application-packaging-training/msi/ebook.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Administrators can use it to automate common application deployment tasks like installing,
updating, and uninstalling applications.

The toolkit can deploy applications to traditional desktops, laptops, and servers, as well as
virtualized environments like Citrix and VMware.

The PowerShell App Deployment Toolkit has a number of features that make it an effective
application deployment tool. Among the key features are:

e Easy to use scripting language: PowerShell is a popular and powerful scripting language
that is simple to learn and use. It is used in the toolkit which makes common application
deployment tasks simple to automate.

e Extensible framework: The PowerShell App Deployment Toolkit is extensible, allowing
administrators to customize and extend it to meet their specific requirements. As a
result, it is a versatile tool that can be tailored to work with a wide range of applications
and environments.

e Application-specific functions: The toolkit contains a set of functions that are
specifically designed to work with popular applications like Adobe Reader, Google
Chrome, and Microsoft Office. This simplifies the deployment and management of these
applications across multiple systems.

e Error handling and logging: The PowerShell App Deployment Toolkit includes powerful
error handling and logging capabilities.

Let's look at how to manipulate registry keys in PowerShell. While PowerShell provides
straightforward cmdlets for modifying registry keys, there are a few things to keep in mind:

e Does the path to the registry key exist?
e Do we need to create a new registry key?
e Do we need to set a registry key?

The purpose of these questions is to assist you in developing your script. If the path to a
specific registry key does not exist, you must create it. As a result, it's critical to test and handle
this situation in your script.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 13

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

SRegistryPath = 'HKCU:\Software\MySoftware\Scripts'
SName = 'Version'
SValue ='2'
Create the key if it does not exist
If (-NOT (Test-Path SRegistryPath)) {
New-Item -Path SRegistryPath -Force | Out-Null

}

Following the creation of the registry path, we must determine whether the registry already
exists or whether a new one is required. You have two options depending on the answer:

1. If the registry already exists, the Set-Iltem cmdlet can be used to set a specific

registry value. As an example:

Set-ltem -Path HKCU:\Software\MySoftware\Scripts\Version -Value “2"

2. If the registry does not exist and must be created, use the New-ltem cmdlet to

create a new registry item and its value. As an example:

New-Item -Path HKCU:\Software\MySoftware\Scripts\Version -Value “2"

The -Force parameter can be used to simplify the preceding steps, but it will make your script
more complex with additional functions. The PowerShell App Deployment Toolkit can help with
this. It includes custom cmdlets that simplify your script.

You can create or set a registry key using the Set-RegistryKey custom cmdlet that PSADT offers.

Simply specify the registry key's exact location, and PSADT will handle the rest of the process

for you.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

14

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-item?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-item?view=powershell-7.3
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

PSADT has grown in popularity and is likely to be used in the majority of infrastructures at the
moment, with its main advantage being that it allows IT professionals to customize a specific
application installation without having to dive into the MST or repackaging areas.

For example, if you want to add small changes to your package, such as registry keys that
disable automatic updates, files, or the EXE file can be installed silently, PSADT makes this
much easier to accomplish, and you are essentially doing the same things as you would with
repackaging via MST or Snapshot.

However, just like any other software tool, it has some potential weaknesses that IT
professionals should be aware of, such as:

e Limited Platform Support: PowerShell App Deployment Toolkit is only compatible with
Windows operating systems. This could be a problem for IT professionals who manage
heterogeneous environments with a variety of operating systems.

e Lack of Rollback Option: PSADT, unlike MSI transforms, does not support rollback. This
means that if something goes wrong during the deployment process, IT professionals
may have to remove the application manually from each affected system.

e Limited User Interface Customization: While the PowerShell App Deployment Toolkit
can be used to customize some user interface settings, it may not be as versatile as
other tools for doing so.

e Dependencies on PowerShell Versions: To function properly, PowerShell App
Deployment Toolkit requires PowerShell 3.0 or higher. IT professionals who manage
systems using older PowerShell versions may need to upgrade their systems in order to
use the PowerShell App Deployment Toolkit.

The PSADT structure is straightforward. In the root of the toolkit, you will find the following files:
e Deploy-Application.ps1
e Deploy-Application.exe
e Deploy-Application.exe.config

These are the files that you can run to begin the installation. The main PowerShell script that
must be modified with the logical installation/uninstallation steps is Deploy-Application.ps1.

The Files folder will then hold all of your installation files, whether they are installers like MSI,
MST, MSP, or other configuration files that you can copy later during installation.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 15

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

W | = |Files

Home Share View

~ 1+ R Downloads > PSAppDeployToolkit v3.8.2 > Toolkit > Files

B hugslib MName . Date modified Type

ii§‘- Orca.Msi 11/09/09 - Fri 9:26 PM Windows Installer ...
B interaction_but

B map_reroll

.. MLG EDITING F
B moody
B New Remote V

B ProcessMonitol
B PsAppDeployT
B PSAppDeployT
B Examples
B Toolkit
B AppDeploy’
M Files

1item |

The AppDeployTookit includes not only the previously mentioned configuration files, but also the
icons, banner, and main functions file.

If you want to add new functions to PSADT, you can either edit AppDeployToolkitMain.ps1 or
create a new ps1 file and include it in the Deploy-Application.ps1.

The final folder is SupportFiles, where you can include any additional files that will be used in the
main script. Technically, you can also use the SdirSupportFiles variable to run the installation of

a specific file directly from the SupportFiles folder.

Advantages of Application Repackaging

Application repackaging is mostly used to distribute programs in an enterprise environment, with
many advantages over alternative methods. Repackaging involves capturing an application's
data, registry settings, and other components and structuring them into an MSI package format
that can be readily installed on target systems.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 16

https://allnewandimproved.psappdeploytoolkit.com/guide/Toolkit-Variables.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The application packaging process proves particularly useful when dealing with legacy
applications or apps that were not originally designed for MSI packaging.

There are several advantages to using application repackaging as a method for deploying
applications in an enterprise environment. These advantages include:

Consistency

Customization

Scalability

Standardization

Efficiency

One of the primary advantages of application repackaging is consistency. IT experts can ensure
that an application is installed consistently across all target systems by generating an MSI
package for it. This decreases the possibility of problems and assures that the application
works properly on all computers. When IT experts manually install software, the chance of
human error increases, which can lead to inconsistency.

Another advantage of application repackaging is customization. IT professionals can change an
application's installation package by repackaging it, such as setting the application to work in a
specific environment, adding features or capabilities, or providing patches or updates. This level
of customization is not possible when using off-the-shelf installation packages, which are often
limited in terms of customization options.

Application repackaging also offers scalability. Repackaging an application allows IT
professionals to deploy it on a big scale while maintaining control over the installation process
and assuring the packages' dependability and efficiency. This makes it simple to deploy apps
within an enterprise environment.

Standardization is another key advantage of application repackaging. IT professionals can use
the MSI format to create standardized and industry-standard installation packages, ensuring
that the packages can be deployed using a variety of tools and technologies, such as Microsoft
System Center Configuration Manager (SCCM), Group Policy, or third-party deployment tools
such as Advanced Installer. This makes it simple to deploy apps utilizing a wide range of tools
and technologies without worrying about compatibility issues.

Efficiency is also an advantage of application repackaging. Repackaging an application can be a
more efficient technique of distributing apps since it allows IT professionals to rapidly and
simply construct installation packages without requiring access to the original installation
media. When deploying apps, this can save a significant amount of time and resources,
especially in big enterprise organizations.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 17

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Ultimately, application repackaging is an effective way for delivering apps in an enterprise
setting. IT pros can use application repackaging to ensure that applications are installed
consistently and reliably across all target platforms, while also modifying the installation
package to fit unique needs.

Furthermore, application repackaging enables IT professionals to deploy applications on a large
scale while maintaining control over the installation process and ensuring standardized and
efficient packages.

Application repackaging offers IT professionals the benefits of consistency, personalization,
scalability, standardization, and efficiency, making it a popular way of application deployment.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 18

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Preparing for MSI Packaging

Understanding Application Dependencies

Understanding application dependencies is an important part of the MSI packaging process
because it allows IT professionals to ensure that the installation package contains all required
components and can be installed and operated reliably on target computers.

Finding application dependencies can be hard and take a lot of time because you need to know
a lot about the application and what it needs, as well as the technologies and tools that are used
to find these dependencies and include them in the installation package.

What are Application Dependencies?

Application dependencies encompass various components a program needs to function
effectively. These include:

e File Dependencies: These are essential files, like DLLs, EXEs, or other resource files, that
an application relies on. These files may be stored in various locations on the system
and must be captured and included in the installation package in order for the
application to execute correctly on target computers..

e Registry Settings: Many applications need specific registry keys or values set up to
operate correctly. Gaining an understanding of an application’s registry demands and
ensuring these settings are part of the package is vital.

e Prerequisite Software: These are software components, such as database servers or
runtime libraries, that must be present for the primary application to function. Their
identification and incorporation into the package are necessary for the smooth running
of the application on target systems.

e Hardware Requirements: Specific hardware prerequisites, like a particular processor
type or amount of RAM, are necessary for some applications. Users must be aware of
these requirements to ensure compatibility.

By understanding application dependencies and documenting them thoroughly, IT professionals

can create installation packages that are reliable and efficient and can be installed easily on
target systems.

Basically, application dependencies can be broken down into three areas:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 19

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e System dependencies
e Software Dependencies
e Other/Custom Dependencies

Advanced Installer offers a quick and easy way to declare dependencies into the MSI package
and we go more in-depth on this topic in two chapters down below:

e Working with Conditional Statements
e Working with Dependencies

Assessing Application Compatibility

Evaluating application compatibility is an important element of the MSI packaging process,
especially for IT professionals in charge of big enterprise setups.

This process actively identifies and addresses compatibility challenges before application
rollout. Such compatibility issues could lead to application malfunctions or failures, frustrating
users and risking enterprise downtime.

One of the main reasons for evaluating application compatibility is to ensure that the application
will work properly on the target system. This entails examining the program's system
requirements in order to determine the minimum hardware and software needs for the
application to work properly. To avoid compatibility concerns, IT professionals must ensure that
the target system matches certain baseline criteria.

Examining the application's dependencies is another crucial component of determining
application compatibility. This includes determining which third-party software components,
such as runtimes or drivers, are required for the application to perform properly. Before installing
the application, IT professionals must ensure that these dependencies are installed on the
target system. Failure to install these dependencies may result in the program failing or
functioning incorrectly.

Another important part of determining program compatibility is compatibility testing. This

entails running the program on a variety of target systems in order to find any compatibility
concerns. Prior to deployment, IT workers must test the program on various hardware and

software configurations to discover and resolve potential issues.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 20

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Assessing the compatibility of the VLC Media Player application

Let's take the example of assessing the compatibility of the VLC Media Player application.
VLC is a popular media player that is widely used on Windows, Mac, and Linux operating
systems.

Reviewing the application's system requirements is one of the first steps in determining VLC
compatibility. VLC requires Windows 7 or later, macOS 10.7 or later, and a kernel version of
2.6.32 or later on Linux. To avoid compatibility concerns, IT professionals must ensure that
the target system matches certain baseline criteria.

Another critical part of determining VLC compatibility is to examine the application's
dependencies. To play various media kinds, VLC requires specific codecs and plugins, and IT
professionals must guarantee that these dependencies are installed on the target machine.
Failure to install these dependencies may result in the program failing or functioning
incorrectly.

Examining the application's dependencies is also an important component in determining VLC
compatibility. VLC requires appropriate codecs and plugins to play various media types, and IT
professionals must ensure that these dependencies are installed on the target PC. If certain
requirements are not installed, the software may fail or function poorly.

When evaluating VLC's compatibility, keep in mind the impact of any updates or patches that
may be released for the application. These upgrades may have an influence on the
application's compatibility with the target system, and

Consider the impact of any updates or patches that may be released for the application when
evaluating VLC's compatibility. These updates may impact the application's compatibility with
the target system.

Application compatibility testing has become much easier with time because nowadays
organizations usually only run on a single OS version (unlike in the past where we had multiple
OSes like XP, Vista, 7 in the same infrastructure) and patching/IPU (in place upgrades) have
become more easy to manage and are released on a steady basis from Microsoft. Basically IT
Professionals must test the application compatibility on a single system with 1 or 2 branches.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 21

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

In conclusion, assessing application compatibility is a critical aspect of the MSI packaging
process, particularly for IT professionals responsible for managing large enterprise
environments.

IT workers can assure that an application will run appropriately on target systems by thoroughly
testing application compatibility, lowering the risk of downtime and user displeasure.

The use of tools and technology to automate the assessment and resolution of compatibility
issues can improve efficiency and effectiveness.

It is critical to keep up with the current trends and technologies in the field of application
compatibility to ensure that MSI packages are dependable, efficient, and simple to maintain.

Per-user versus Per-machine installations

One of the most important decisions that IT professionals must make when deploying software
on Windows machines is whether to use a per-user or per-machine installation.

Both installation methods have advantages and disadvantages, and selecting the correct
method can have a significant impact on application performance, security, and user
experience. In general, in managed environments, the per-machine installation is preferred.

What are per-user installations?

Per-user installations are intended to install an application only for the current logged-in user.
This means that the application will be available only to that user and will not be accessible to
other users who log in to the same machine.

Per-user installations are commonly used for applications that aren't meant to be shared by
multiple users or machines, such as personal productivity tools or small utilities.

A great mention in the per-user area in terms of installer technologies is MSIX. MSIX is a newer
packaging format introduced by Microsoft in Windows 10 version 1709. Unlike traditional MSI
packages, which support both per-user and per-machine installations, MSIX is only intended
for use with per-user installations.

MSIX packages are specifically designed to support per-user installations, with an emphasis on

providing end-users with a streamlined and reliable installation experience. The format makes
use of a number of advanced features and technologies, such as containerization and

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 22

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

virtualization, to ensure that applications are correctly installed and configured, even in complex
and diverse IT environments.

One of MSIX's primary advantages is that it provides a more secure and efficient method of
installing and managing applications on Windows machines. MSIX packages are isolated from
other applications on the system by using containerization technology, which helps to prevent
conflicts and compatibility issues.

For more details about the MSIX technology we recommend you have a look over our MSIX
Packaging Fundamentals free ebook.

What are per-machine installations?

In contrast, per-machine installations are intended to install an application for all users who log
in to a specific machine. This means that the application will be accessible to all users of the
machine, regardless of who installed it originally.

Per-machine installations are typically used for enterprise applications that require all users in
an organization to have access to them, such as office suites or line-of-business applications.

Each installation type has advantages and disadvantages. Because they do not require
administrative privileges and can be installed by the user without assistance from IT, per-user
installations are frequently simpler and easier to manage.

Per-user installations, on the other hand, can be more difficult to manage in a large-scale
environment because they necessitate individual installation and configuration for each user.

Per-machine installations are more complicated and necessitate administrative privileges. They
are also less secure because they grant access to the application and its files to all users on the

machine.

Per-machine installations are easier to manage in a large-scale environment because they can
be deployed and configured once for all users.

Way forward for your installer

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 23

https://www.advancedinstaller.com/msix-packaging-fundamentals.html
https://www.advancedinstaller.com/msix-packaging-fundamentals.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Depending on the situation, there are a number of actions you can take when it comes to
repackaging an application:

MSI: If the application comes as an MSI, the way forward to further customize and
deploy the application would be to create transform files (MST)

EXE: There are three possibilities on how to advance with an EXE installer. The most
popular one is to repackage it via the snapshot method, but there are cases where the
EXE installer actually contains an embedded MSI which is extracted and then installed,
and the final case is where the application is so complex that it's best to install it silently
via a wrapper method

The MSI scenario is quite straightforward so we would go ahead and have a look over the EXE
scenario.

The first step is to determine whether the EXE requires repackaging or if it contains an
embedded MSI. There are several ways to determine whether an EXE installer contains an
embedded MSI:

Open Task Manager and check if the msiexec service appears in the list during the
installation

Check the Uninstall registry and see what uninstall command has appeared or if the key
name resembles an MSI Product Code

Use Process Monitor

Process Monitor has grown in popularity among IT professionals for not only detecting whether
an MSI is embedded in another MSI, but also for detecting additional system changes
performed by applications, debugging applications, and so on.

To detect if an EXE contains an embedded MSI with Process Monitor, follow these steps:

D

DownloadProcess Monitor: Visit the official website of Process Monitor
(https://learn.microsoft.com/en-us/sysinternals/downloads/procmon) and download
the latest version of the tool.

Launch Process Monitor: Extract the archive and start Process Monitor

Configure filters: Before monitoring the installation process, it's helpful to set up filters to
narrow down the captured events and focus on the relevant activities. Click on the "Filter"
menu, and then select "Filter..." to open the Filter dialog box.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 24

https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

B Process Monitor Filter

Display entries matching these conditions:

Architecture

s

S

~ | then Include e

Feset Add Bemove
Column Relation Value Action
] @ Process M... is Procmon.exe Exclude
] @ Process M... is Procexp exe Exclude
] @ Process M... is Autoruns exe Exclude
] @ Process M... is Procmonbd exe Exclude
] @ Process M... is Procexpbd exe Exclude
] @ Process M... is System Exclude
] ﬁ Operation beqins with IRP_MJ_ Exclude
| [9]8 Cancel Apply

Configure filter rules: In the Filter dialog box, specify the conditions to filter the events. To detect
if an EXE installer contains an embedded MSI, you can set up the following filters: In the "Display
entries matching these conditions" select "Operation", “is”, “Process Create” and then “include’.
Click on Add.

B Process Monitor Filter x>

Display entries matching these conditions:

Operation s « | Process Create v| then Include e
Reset Add | Eemove

Column Relation Value Action

] @ Operation s Process Create Include

] @ Process M... is Procmon.exe Exclude

] @ Process M... is Procexp exe Exclude

] @ Process M... is Autoruns. exe Exclude

] @ Process M... is ProcmonG4. exe Exclude

] @ Process M... is Procexpbd exe Exclude

/] a Process M... is System Exclude

oK Cancel Apply

These filters will record events related to the EXE installer and any MSI files used during its

J

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

25

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

execution.

e Begin capturing events: After configuring the filters, select "Start" from the "Capture’
menu, or press the Ctrl + E shortcut to begin capturing events.

e Run the EXE installer: Launch the EXE installer you want to analyze. The Process Monitor
will start capturing events in real-time.

e Analyze captured events: When the installation is finished, or when you want to stop
capturing events, go to the "Capture” menu and select "Stop," or press the Ctrl + E
shortcut. In the main window of Process Monitor, a list of captured events will be
displayed.

e Filter and analyze events: To analyze the captured events, use the various columns and
filter options in the Process Monitor window. Look for file system operations involving
MSI files (with the extension ".msi") and registry operations involving MSI execution
(ending with ".msiexec.exe"). These events indicate that an MSI is embedded within the
EXE installer.

For example, if we install Tableau Reader and start the Process Monitor tool and follow the
above steps, we will have the following operations captured:

We're most interested in the Path and Detail columns. Looking at what TableauReader.exe does,
it first extracts the installer data into a temporary directory in the %temp% directory, then installs
the Visual C++ Redistributables 2013, followed by the Tableau Reader. However, if we look
closely, we can see that the msiexec.exe service is called, indicating that the exe file is
extracting the file in that %temp% location.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 26

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

This is an example where you will need to create a transform file (MST) to further customize the
Tableau Reader MSI installation, but also to use the dependencies to declare that Visual C++
Redistributable 2013 is needed in order for the application to function properly.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 27

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Repackaging the Application Using
Repackager

What is Application Repackaging

Repackaging plays an important role in organizations' software lifecycle management by
enabling efficient deployment, customization, and maintenance of software applications.

Capturing an existing software installation, transforming it into an installer package, and
customizing it to meet specific deployment requirements are all part of the process. While
adhering to best practices and compliance standards, repackaging ensures consistent and
reliable installations.

Some of the key concepts in Repackaging consist of:

e Application Capture: Monitoring the changes made to the system during the installation
is part of the process of capturing an existing software installation. It records data such
as file and registry changes, system settings, and dependencies. The collected data is
used to create the installer package.

e Transformation: Once the application is captured, it needs to be transformed into an
installer package format. This involves converting the captured data into a structured
format compatible with industry-standard installation technologies such as Windows
Installer (MSI).

e Customization: Customizations to the captured application can be applied through
repackaging. Modifying installation settings, adding registry entries, configuring
application parameters, defining file associations, and incorporating specific deployment
requirements are all examples of this. Customizations ensure that the packaged
application adheres to organizational policies as well as user preferences.

e Quality Assurance: Quality assurance is critical in repackaging, as it is in any software
development process. It entails putting the packaged application through its paces to
ensure its functionality, compatibility, and adherence to organizational standards.
Installation testing, user acceptance testing, and compatibility checks with various
operating systems and configurations are examples of quality assurance activities.

e Version Control: Version control of packaged applications is also involved in
repackaging. Version control ensures that changes to installer packages are tracked and

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 28

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

documented properly over time. It allows organizations to revert to previous versions if
problems arise, as well as keep a history of package changes for auditing and
compliance purposes.

Although repackaging might take additional time to perform than to just take the MSI directly
from the vendor website, there are many benefits on walking on the repackaging path:

Streamlined Deployment: By providing standardized installer packages that can be
easily distributed across multiple machines, repackaging simplifies the deployment
process. It ensures consistent installations and saves time and effort on manual
installations and configurations.

Customization and Configuration: By incorporating specific customizations,
configurations, or additional components, repackaging enables tailor-made installations.
This allows organizations to meet specific deployment needs and deliver applications
that are optimized for their environments.

Compatibility and Dependency Management: Repackaging aids in the resolution of
compatibility issues and the management of application dependencies. It ensures that
applications run smoothly on target machines without conflicts or missing prerequisites
by capturing and packaging the necessary components and dependencies.

Software Maintenance and Updates: Repackaging makes software maintenance and
updates easier. It enables organizations to efficiently package and distribute new
versions or patches of applications across their infrastructure, ensuring consistent and
timely updates.

Standardization and Compliance: By adhering to established packaging practices and
guidelines, repackaging promotes standardization. It ensures that applications are
packaged consistently, in accordance with compliance standards and organizational
policies. This aids in the maintenance of a secure and compliant IT environment.

As with any other area in IT, there are some best practices in repackaging that we suggest you

follow:

D

Documentation: Documenting the repackaging process is critical for keeping track of the
steps taken, the customizations used, and any known issues or workarounds.
Documentation is essential for troubleshooting, knowledge sharing, and ensuring
consistent repackaging practices.

Testing and Validation: It is critical to thoroughly test and validate packaged
applications to ensure their functionality and compatibility. It is recommended that
comprehensive testing be performed on various operating systems, configurations, and
deployment scenarios before deployment to identify and address any potential issues.
Version Control and Change Management:The use of version control and change
management processes aids in the tracking and management of changes made to

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 29

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

packaged applications. It ensures proper documentation, promotes collaboration, and
allows organizations to revert to previous versions if necessary.

e Packaging Standards and Templates: Setting packaging standards and using predefined
templates can help to speed up the repackaging process. Standardized practices ensure
consistency and efficiency while lowering the likelihood of errors or variations in the final
packages.

e Collaboration and Knowledge Sharing: Collaborating and sharing knowledge among
repackagers within the organization promotes best practices and fosters continuous
improvement. Sharing knowledge, experiences, and troubleshooting methods can
improve the repackaging process and ensure better results.

We have covered the best practices of repackaging more in-depth in our first MS| Packaging
Essentials Ebook.

Repackaging is a critical component of software lifecycle management, allowing organizations
to deploy and manage applications more efficiently. Capturing, transforming, and customizing
software installations to meet specific deployment requirements is involved. Organizations can
streamline the repackaging process, ensure quality and compliance, and achieve consistent and
reliable software deployments across their IT infrastructure by following best practices.

Preparing for Repackaging

It is critical to adequately prepare before beginning the repackaging process to ensure a smooth
and successful outcome. Understanding the software to be packaged, gathering the necessary
resources, and laying a solid foundation for the repackaging project are all part of proper
preparation. This chapter delves into key considerations and best practices for repackaging
preparation.

Probably the most important part of software repackaging is to properly understand the
application which you are going to recapture. In this process you can have a look at:

e Application Documentation: Begin by compiling detailed documentation for the software
application to be repackaged. This includes installation guides, user manuals, release
notes, and any other documentation that is relevant. Understanding the functionality,
dependencies, and requirements of the application will make the repackaging process
easier.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 30

https://www.advancedinstaller.com/application-packaging-training/msi/ebook/repackaging-recommendation.html
https://www.advancedinstaller.com/application-packaging-training/msi/ebook/repackaging-recommendation.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Application Dependencies: Determine the application's dependencies, which may include
runtime libraries, database connectors, frameworks, or any other components required
for proper functionality. Make a list of these dependencies and include them in the
repackaging process.

Licensing and Legal Considerations: Examine the software's licensing agreements and
ensure that licensing requirements are met during repackaging. Recognize any
restrictions, limitations, or specific guidelines that may apply to redistributing the
software. If necessary, seek the advice of legal and licensing experts to ensure
compliance with licensing requirements.

The next step is to make sure that you have all the necessary resources for the repackaging
operation:

Repackaging Tools:Locate and purchase the necessary repackaging tools. Advanced
Installer, AdminStudio, Wise Package Studio, and Orca are all popular repackaging tools.
Examine the features, compatibility, and ease of use of these tools to find the best fit for
your repackaging needs.

Virtual Machines or Test Environments: To perform the repackaging process, set up
virtual machines or dedicated test environments. These environments enable isolated
testing and validation of repackaged applications while not interfering with the
production environment. Make sure the test environment closely resembles the target
deployment environment.

Working in a clean and controlled environment is one of the most important aspects of a
successful application repackaging process. A clean environment improves the accuracy,
reliability, and repeatability of the repackaging process. This section discusses the importance
of a clean environment for repackaging and provides guidelines for creating one:

D

Isolation and Control: Working in a clean environment allows you to isolate and control
the repackaging process. You reduce the risk of unintended consequences, conflicts
with existing software, or interference with critical system settings by separating the
repackaging activities from the production environment. It allows you to concentrate
solely on the repackaging task without being distracted by outside factors.

Avoiding Interference: Interference from existing software installations, system
configurations, or conflicting components is avoided by repackaging applications in a
clean environment. It ensures that the repackaged application remains independent of
the host system and does not inherit any unwanted dependencies or settings. This
isolation improves the repackaging process's dependability and predictability.
Minimizing Variability: Variability caused by different system configurations or
inconsistent installation states can be reduced in a clean environment. Repackaging in a
controlled environment ensures consistency across multiple repackaging sessions,

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 31

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

lowering the possibility of errors, inconsistencies, or unexpected behavior in the
repackaged application.

e Eliminating Conflicting Dependencies: A clean environment enables you to eliminate
potentially conflicting dependencies in the production environment. By starting with a
clean system or virtual machine, you can install only the components required for the
repackaged application. This method creates a clean slate and ensures that the
repackaged application is self-contained and conflict-free.

e Reproducibility and Troubleshooting: A clean environment improves reproducibility and
makes troubleshooting easier. Working in a clean environment allows you to identify and
isolate the specific factors causing the problem if problems arise during the repackaging
process. Without the complexities introduced by an existing system, it becomes easier
to troubleshoot, diagnose, and resolve issues.

More about clean images can be found in our first MSI Packaging Essentials Ebook.

To set up a clean environment, some steps must be considered:

e Virtual Machines: Consider using virtual machines (VMs) to create clean and isolated
repackaging environments. Virtual machines enable you to create snapshots of pristine
system states, revert to a clean state as needed, and easily clone environments for
parallel repackaging efforts. Each VM can be dedicated to a specific repackaging
project, ensuring that each application runs in a clean and controlled environment.

e Clean System Image: Create a clean system image or baseline configuration that
includes the bare minimum of repackaging components. This image can be used to kick
off repackaging efforts. You can maintain a controlled environment throughout the
repackaging process by keeping the baseline system clean and avoiding unnecessary
installations or customizations.

e Repackaging Workstations: Set aside specific workstations for repackaging activities.
These workstations should be kept separate from machines used in production or on a
daily basis. By repackaging on dedicated hardware, you reduce the risk of unintended
interference from unrelated activities or software installations.

e Sandbox or Container Solutions: To create isolated environments for repackaging,
consider using sandbox or container solutions. These solutions provide a virtualized
environment that isolates the repackaging process from the host system. Sandboxing
tools such as Sandboxie and container technologies such as Docker provide a controlled
and isolated environment for repackaging applications.

Advanced Installer supports repackaging in Docker Images.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 32

https://www.advancedinstaller.com/application-packaging-training/msi/ebook/repackaging-recommendation.html#_idTextAnchor079
https://www.advancedinstaller.com/user-guide/repackaging-docker.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Starting with version 20.7, Advanced Installer supports repackaging in Windows Sandbox.

By creating a clean environment for repackaging, you improve the process's accuracy, reliability,
and repeatability. A clean environment reduces interference, eliminates conflicts, and creates a
safe environment for repackaging activities. Investing in a clean environment, whether through
virtual machines, clean system images, or sandboxing solutions, ensures the success of your
repackaging projects.

Capturing an Application with Repackager

Introduction to Repackager

Advanced Installer includes a powerful repackaging solution for converting traditional
installations into MSI packages. Advanced Installer Repackager's user-friendly interface and
extensive feature set make it simple to create dependable and professional MSI packages.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 33

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

| & + | Advanced Repackager 20.7 (64 bit) - o % |

“ Home View Tools |

wu's | Advanced Installer
. REPACKAGER

Start something new Open recent applications

Convert your existing applications into a MSI, MSIX/APPX or App-V.
If you have a MS X or App-V package, it will be imported directly in
Advanced Installer repackage vs. import).

Recent application
Apache Tomcat
C:\Users\User\Dacuments\Advanced Installer\Projects\Apache Tomcat.rpp
Your Application
O session Monitoring Ci\Users\User\Documents\Advanced InstallerProjects\victestWindows Sandbox.rpp

Your Application

CAUsers\User\Documents\Advanced Installer\Projects\victestsb.rpp

Your Application

C\Users\User\Documents\Advanced Installer\Projects\rdfdsfsd.rpp

Your Application
C\Users\User\Documents\Advanced Installer\Projects\t6esttt.rpp

Your Application

Ci\Users\User\Dacuments\Advanced Installer\Projectsitest.rpp

Open Advanced Installer for more packaging options

Your Application

Ci\Users\User\Documents\Advanced Installer\Projects\Your Application.rpp

How-tos Resources

> JPe & Give feedback

W Support x Community

Key Features of Advanced Installer Repackager:

e Automated Repackaging: The Repackager tool in Advanced Installer automatically
captures changes made during application installation and generates an MSI package.

e Snapshot Technology: The Repackager monitors system changes during the installation
process using advanced snapshot technology. It records file and registry changes, COM
registrations, shortcuts, services, and other activities.

e Intelligent Conflict Resolution: Advanced Installer handles installation conflicts and
automatically resolves issues such as file clashes, registry conflicts, and component
dependencies.

e Customization and Configuration: Using Advanced Installer's extensive feature set,
repackaged packages can be customized. Custom actions, installation conditions,
installation sequences, and configurations can all be added.

e Compatibility and Validation: Advanced Installer ensures Windows compatibility and
validates repackaged packages to ensure compliance with best practices and industry
standards.

We provide the ability to connect Advanced Repackager to multiple VM platforms for the VM
option:

e VMWare machine

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 34

https://www.advancedinstaller.com/user-guide/tutorial-repackager-vm.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Hyper-V machine

Oracle VM VirtualBox machine
vSpehere

Windows Sandbox

Docker

What is the SnapShot Method ?

The snapshot method is a popular technique for creating installer packages in application
repackaging. Advanced Repackager, an Advanced Installer feature, makes repackaging easier
by providing an intuitive interface and powerful capabilities. Let's take a closer look at the
snapshot method and how it's used in Advanced Repackager.

The snapshot method involves capturing changes made to a system during application
installation. These modifications are then packaged into an installer, which can be distributed
and installed on other machines. This method allows you to create custom installer packages
without requiring extensive manual configuration.

Advanced Repackager is a feature-rich tool that automates the process of capturing changes
and generating installer packages, making the snapshot method easier to use. Here's a rundown
of the main steps in using Advanced Repackager:

e Preparing the Repackaging Environment: Make sure your system environment is clean
before beginning the repackaging process. This includes removing any previous
installations or remnants of the repackaged application. This step aids in the capture of
a clean snapshot.

e Starting the Snapshot Process: Select the "Create New Project" option in Advanced
Repackager. To begin the snapshot process, select the "Snapshot” method. This will
create a backup of your system prior to installing the target application.

e |Installing the Application: Install the application that you want to package in the usual
way. The changes made during the installation process will be monitored and recorded
by Advanced Repackager.

e Capturing the Changes: Once the installation is complete, Advanced Repackager will
compare the current state of the system to the earlier baseline snapshot. It will
recognize and record all changes made, including file and registry changes, system
settings, services, and more.

e Reviewing and Customizing the Snapshot: Advanced Repackager generates a detailed
report of the changes that were captured. You can go over the captured data and make
any necessary changes or customizations. Excluding unwanted files or registry entries,

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 35

https://www.advancedinstaller.com/user-guide/tutorial-repackager-hyper-v.html
https://www.advancedinstaller.com/user-guide/tutorial-repackager-virtualbox.html
https://www.advancedinstaller.com/user-guide/tutorial-repackaging-using-vsphere.html
https://www.advancedinstaller.com/user-guide/repackaging-docker.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

configuring shortcuts, defining installation prerequisites, and other tasks may be
included.

e Generating the Installer Package: Advanced Repackager generates an installer package
based on the modifications after reviewing and customizing the captured changes.
Additional installation options, such as installation location, user prompts, and
uninstallation options, are available. The installer package that results is ready for
distribution and deployment.

What is Session Monitoring ?

Session monitoring is a feature in Advanced Repackager that allows you to observe and track
changes made to the system without the need for an application installer. It records system
changes like file and registry changes, environment variable updates, service installations, and
more, providing detailed information about the installation activity.

The session monitoring feature is critical in the repackaging process because it enables you to
understand how the application interacts with the system and identifies the changes needed to
create a clean and reliable installer package. You can capture all of the necessary changes
made by the application and ensure that they are accurately included in the final package by
monitoring the customization session.

Here are some key aspects of session monitoring in Advanced Repackager:

e Real-time monitoring: Advanced Repackager monitors the system in real-time while an
application is being modified, capturing all changes made by the application. It tracks
the changes and compiles them into a detailed report that can be analyzed later.

e Detailed change tracking: Session monitoring records a variety of system changes, such
as file additions, modifications, and deletions, registry changes, environment variable
updates, service installations, and more. It provides a detailed breakdown of each
change, allowing you to comprehend the installer's impact on the system.

e Customizable monitoring filters: During the monitoring process, Advanced Repackager
allows you to define filters to focus on specific types of changes. You can choose to
exclude specific file types, folders, or registry keys from monitoring, giving you more
control over the results.

e Post-monitoring analysis: After the installation session is complete, you can review the
captured changes and assess their relevance to the repackaged application. Advanced
Repackager has an easy-to-use interface for navigating through the captured changes,
allowing you to accept or reject specific modifications based on their significance.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 36

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Repackager settings

Advanced Repackager provides a number of customization options for the repackaging
operation, allowing you to tailor the process to your specific requirements. You can improve the
efficiency and effectiveness of your repackaging workflow by selecting the appropriate actions,
scanning options, and utilizing system data. Here are a few Repackager options:

Actions:

e Prompt and wait before installing packages: Before the installation process can begin,
this option requires user input. To proceed, you must press the ENTER key in the CLI
window.

e Prompt and wait after installing packages: After the installation process is complete, this
option requires user input. To proceed, press the ENTER key in the CLI window, as you
did with the previous option.

e Detect issues that may interfere with the scanning operation: The Check Machine State
dialog will be displayed before beginning the repackaging operation. This dialog provides
information about potential problems that may arise during the scanning process. It
makes suggestions for resolving these issues.

e Automate package installation by invoking Ul controls to walk-through the installation
steps: This option enables the automation of Ul controls to automatically navigate
through the installation steps. It is important to note that relying solely on this option is
not recommended for more complex installations.

Scanning Options:

e Use process monitor in conjunction with system scan: This option combines the system
scan with limited process monitor functionality. While it can improve scanning, it may
lengthen the overall operation time.

e Detect embedded MSIs and abort operation: The repackaging operation will be aborted if
it encounters embedded MSIs within the package. This contributes to a clean and
accurate repackaging process.

System Data:

e Save system snapshots on disk after installation capture is completed: After the
installation capture is complete, this option saves an initial system snapshot to disk. The
saved snapshot can be used in subsequent repackaging operations, removing the need
for the Repackager to generate a new initial snapshot. This significantly reduces the time
required to complete future repackaging processes.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 37

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Generate a .bat file with settings from the session: Enabling this option creates a.bat file
in the repackaging operation's output folder. The.bat file automates the repackaging
process, making it simple to replicate the same settings in future repackaging sessions.

e Filter scan results using a system noise recording: This option aids in identifying and
documenting changes made by the system or third-party applications that may interfere
with the repackaging process. The recorded noise is saved as a rpknoise file, which can
be accessed later.

e Perform a system noise scan before repackaging: This option performs a noise scan
prior to the repackaging operation to identify system changes.

e Use a previously generated noise recording: By selecting this option and browsing for an
existing noise recording file, you can load and utilize a previously saved noise recording.

£ 1D B~ i = | Your Application - Advanced Repackager 207 (54 bty) - o x

Default

D SN

:—E(nnﬁguratmn Manager Start Startin Startin StartIn

Local Sandbox VM~ Docker~

Sean Configuration Capture

Session

Project

Properties

@ Package Information Project Options

Actions
Prompt and wait before installing packages
Prompt and wait after instaling packages
Detect issues that may interfere with the scanning operation

Automate package installation by invoking UI controls in order to walk-through the installation steps

Scanning options
Use process monitor in conjunction with system scan

Detect embedded MSIs and abort operation

System data
("] save system snapshots on disk after installation capture is completed
[Generate .bat file with settings from this session (usable for automation scenarios)

[T)Generate .ps1 file with settings from this session (usable for automation scenarios)

[Filter scan results using a system noise recording |

Advanced repackager also includes a comprehensive set of filter settings that allow you to
precisely and precisely fine-tune your installation packages. In this article, we will look at the
various aspects of filter settings and how they can be used to improve your packaging process.

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 38

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The Edit Filter Settings page is where you can configure filters for different elements in your
installation package. It has an easy-to-use interface for managing filters for files, file folders,
registry entries, and processes.

! Configuration Manager x

Configurations
Default (Read Only)
Msix (Read Only)

EE Settings ﬁ File Types |]Ji"| Files and Folders 55 Registry E] Processes

Options
Parse and import INI files
Parse and impart XML files
Parse and import J5CN files
Import shortout files in Windows Installer format
Make shortouts advertised by default

Detect and replace resources with MSMs

Interpret Captured Raw Data

Services Environment Variables
Drivers Assemblies

File Assodations Windows Firewall Settings
Scheduled Tasks Control Panel Applets

Cancel Help

+ @O v X

You can use filter settings to include or exclude specific elements based on a variety of criteria.
During the installation process, you can define filters to include or exclude files, file folders,
registry entries, and processes. This allows you to tailor the installation to your specific needs.

File Type Filters allow you to narrow down your file selection based on their type. To include or

exclude specific file types from the installation, you can specify file extensions or patterns. This
ensures that the package contains only relevant files.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 39

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

! Configuration Manager *

Configurations |
Default (Read Only)
Msix (Read Only)

EE Settings ﬁ File Types HE Files and Folders E‘é’ Reqistry @ Processes

Exdude Files With Attributes

Read Only Compressed
System Archive
Hidden Temporary

Exdude Files With Extensions

cab Add...
ci
crmilog
dir
athr
log
logl
msi

Remove

Exclude files without extension

+ [v X

Cancel Help

Files and Folders Filters enable you to include or exclude specific folders from the installation.
You can define folder filters based on their names or patterns, allowing you to precisely control
which folders are included or excluded.

Eo Advanced Techniques in MSI Packaging

Powered by AdvancedInstaller.com

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

! Configuration Manager *

Configurations | FH settings 7] File Types U-E'I Files and Folders 5% Registry 5l Processes
Default (Read Only)
| Msix (Read Only) Indude
WindowsVolume Add Folder...
Remave
Exclude
Folders Add Folder...
AppDataFalder\Caphyon I ndd
appDataFolderMicrosoft\Crypto AR
AppDataFolder \Microsoft\HTML Help Add Mame. ..
AppDataFolder Micrasoft\Installer
AppDataFolder \Micrasoft\Search Remove
C o [D v x Cancel Help

Registry Filters give you the ability to include or exclude specific registry entries from the
installation. By defining registry filters based on key paths or patterns, you can ensure that only
the required registry settings are included in the package.

Powered by AdvancedInstaller.com 41

Eo Advanced Techniques in MSI Packaging

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

! Configuration Manager *

Configurations |
Default (Read Only)
Msix (Read Only)

FH settings 7] File Types [Files and Folders o Registry Ef Processes

Indude

HKEY_CURREMNT_USER Add...
HKEY_LOCAL_MACHINE

Remaove

Exclude

HKEY_CLASSES_ROCT\AppID Add...
HKEY_CLASSES_ROOTVCLSID

HKEY _CLASSES ROOTVComponent Categories
HKEY_CLASSES_ROCT\Installer

HKEY_CLASSES_ROGOT\Interface

HKEY _CLASSES_ROOTY ocal Settings\Software \Microsoft\Windows\Cu. ..
HKEY CLASSES ROQT'Local Settinos\Software MicrosoftWWindows\Cu. .. Remave

+ [v X

Cancel Help

Process Filters allow you to include or exclude specific processes during the installation. You
can define process filters based on process names or patterns, ensuring that the installation
process is not affected by unwanted processes.

Eo Advanced Techniques in MSI Packaging

Powered by AdvancedInstaller.com

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

| Configuration Manager *

Configurations
Default (Read Only)
Msix (Read Only)

—|— Settings | | File Types [T Files and Falders En Reqistry EI Processes

Exdude Processes Matching

If the option "Jse process monitor in conjunction with system scan”is
enabled the following processes will be exduded.

advinst.exe Add...
dropbox
MpCmdRun.exe
MpUXSrv.exe
MSASCui.exe
MSASCuL. exe
MsMpEng.exe
MisSrv.exe
onedrive
Repackager.exe
RepackagerCLL. exe
RexecServer.exe

RexecServerlUserApp.exe Remay

Cancel Help

While it may appear to be a bit overwhelming, especially for inexperienced IT professionals, the
default settings provided by Advanced Repackager are more than sufficient to handle the
maijority of the repackaging operations that are required. The additional settings are for
experienced IT Professionals who know exactly how to fine-tune the product to maximize their
scenarios and achieve the best results possible.

Capture cleanup

Capture cleanup is a critical step in the application repackaging process that involves removing
any unnecessary or unwanted changes that were captured during the snapshot phase. It
ensures that the resulting installer package contains only relevant and necessary changes,
improving the overall efficiency and reliability of the deployment.

Advanced Repackager captures various system changes during the capture phase, such as file
and registry modifications, system settings, services, and more. However, not all of these
changes are required for the application to function properly. Some changes captured may be
unrelated to the application or may cause conflicts with other software on target machines
despite our efforts to continuosly improve the noise captured by our tool. Keep in mind that we
are improving the reliability of our tool with each release and we also improve our best practices
implementations in the tool to help you get the best repackaging output on the market.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 43

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Before generating the final installer package, the capture cleanup process allows you to review
and modify the captured changes. It entails locating and deleting any unnecessary files, registry
entries, or settings that are not required for the application's installation and functionality.

Here are some important factors to consider and best practices for performing capture cleanup:

e Thoroughly review captured changes: Examine the captured changes carefully using the
Advanced Repackager interface. Examine each file, registry entry, and setting to
determine its relevance to the repackaged application.

e Exclude unnecessary files: Determine whether any files captured during the snapshot
are unrelated to the application or can be obtained separately during the installation
process. Exclude these files from the final installer package to reduce its size and
complexity.

e Remove conflicting or redundant registry entries: Examine the captured registry entries
for any that may conflict with existing system configurations or other software. To ensure
a clean and error-free installation, remove any redundant or conflicting entries.

e Customize application settings: If the application's default settings are incompatible with
your intended deployment, make the necessary changes during the capture cleanup.
This may include configuring default options, disabling unnecessary features, or
specifying custom settings that correspond to your deployment needs.

e Test thoroughly: After completing the capture cleanup, test the resulting installer package
thoroughly on a clean system or virtual machine. Check that the application installs
properly and works as expected. Testing identifies any remaining issues or conflicts that
may require additional cleanup or customization.

You can optimize the resulting installer package for a smooth and reliable deployment by
carefully reviewing and cleaning up the captured changes. It enables you to streamline the
installation process, reduce potential conflicts or errors, and ensure that the installed application
runs consistently and reliably across target machines.

Practical repackaging example on VLC Media Player

Let’s take an example when we repackage VLC Media Player from VideoLAN. Launch
Advanced Repackager and select Capture Setup. A file prompt will appear in which you need to
select the VLC executable.

Once the executable has been chosen you have the possibility to start the repackaging session
either:

e |ocal

e Windows Sanbox

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 44

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e VM
e Docker

For the purpose of this tutorial we will use the Windows Sandbox option.

: &3 | F 3 [@- i - = | Your Application - Advanced Repackager 20.7 (64 bit)™
o

- r

E(Dnﬁgummn Manager Start Startin Startin Startin
| Local Sandbox VM~ Docker~

Scan Configuration Capture

Session Properties

|[i7} Project

7 Package Information Project Options

[Session Monitoring

Packages

Setup Path: C:\Users\User\Downloads\vlc-3.0. 18-win32.exe

Command Line:

‘ Additional packages

Once you click on the desired snapshot method, a prompt will appear to save the project. Once

you save the project, Advanced Repackage handles the rest and:

Starts the Windows Sandbox

Installs the Advanced Repackager tools in order to control the operation within the

Sandbox
Starts the initial system snapshot

Install the application. In this step you will have to manually perform the installation or
you can pass any parameters you desire before you start the repackaging operation if

you desire this to be silent
Takes second system snapshot
Outputs the RPK Project

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Once everything is done you now have an RPK project with all the captured modifications in the
sandbox.

As mentioned earlier, this is where the cleanup part of the capture comes in. In the first tab you
have the possibility to add the general information of your package, such as the application
name, version, publisher. In our case the application name is VLC Media Player, the version is
3.0.18 and the publisher is VideoLAN.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 46

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Repackager Session

G AP E-w~]
Home View

'ackage =] r
M| Packag %ﬂ [)!! ['Eﬁ‘% -%)

Tools Session

VLC Media Player M3I PAckaging Book - Advanced Repackager 20.7 (64 bit)

Mo Template [] MsIX Package
N Build Trace Generate Open In Advanced
* [AP Package Msix App Report Installer
Templates Builds
Session Details
Project
|5 mformation 7' Digital Signature 1™ Files and Foiders & Registry (5] System

2] 2023-05-2912-54-20

Package
Name: WLC Media Player
Version: 3.0.18
Publisher
ID: CN=Your Company
Name: WdeoLAN

Session Details
Scan configuration: Default

Targetmachine: Windows Sandbox

The next tab refers to digital signatures, a topic which is coming more and more important even

to MSI packages due to the newly implemented SAC security by Microsoft. For the purposes of

this tutorial we will skip this tab, but keep in mind that if you intend to deploy MSIX packages,

digital signatures are not optional.

Eo Advanced Techniques in MSI Packaging

Powered by AdvancedInstaller.com

47

https://www.advancedinstaller.com/smart-app-control-windows-11-compatibility.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

G AP E-w~]

Home

Repackager Session

Tools Session

ol L S

View

WS| Package

»

Mo Template [] MsIX Package
- Build Trace Generate Open In Advanced
* [AP Package Msix App Report Installer
Templates Builds
Session
Project

2023-05-29 12-54-20

VLC Media Player MSI PAckaging Book -

Advanced Repackager 20.7 (64 bit)* -) X

Details

|5 Information |7 Digital Signature I Files and Foiders 5§ Registry [System

[DEnable signing Reset Al
Builtin
Software Publisher Certificate
Use from certificate store: <Most suited certificate > Create...

Use file from disk

Use from Azure Key Vault (requires 5 10 and a configured Azure Key Vault)

Use Device Guard for signing (requires Windows 10 and an active Microsoft Active
Directory account configured for Store for Business)

Signature Properties

http: //imestamp.digicert.com
0
Sign orly for modern operating systems, Windows 7 or newer (recommended)

Sign for compatibility with all operating systems, induding Windows Vista (deprecated)

Patching

Enable installing of patches for this product without elevation

Moving on to the next tab, files and folders, it is critical to only check the folders that are related
to your application. Unfortunately, there is no automated method for correctly identifying such
changes, and you, as an IT Professional, must use your understanding and best knowledge of
the application to determine the appropriate resources.

During this run, our repackager was successful

in identifying only files and folders that are

related to VLC, so we don’t need to do any extra scrubbing.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

J

48

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

G AP E-w Repackager Session
Home View Tools Session
Msl Package ﬁ ‘. l_Ll ‘9
- 53
Mo Template [] MsIX Package [L] ﬁﬁt -
i Build Trace Generate Open In Advanced
= [APpv Package Msix App ~ Report Installer
Templates Builds
Session
Project

2023-05-29 12-54-20

VLC Media Player MSI PAckaging Book - Advanced Repackager 20.7 (64 bit)* - O X

Details

|5 Information |7 Digital Signature [Files and Folders 5§ Registry (5] System
Folders [Mame Size

B Target machine
~ @ ProgramFilesFolder
~ @ VideoLAN

~ @ Vi
&8 hrfs
> @7 locale
> @70 lua
> @ plugins
> @ skins
+ @ ProgramMenuFolder
B VideolAN

We then proceed to the registry tab, where we must perform some cleanups. Looking in the
HKEY CURRENT USER hive, we see that we have the classes associated with VLC, as well as
some file extensions for VLC, but we also have some captured registry that is clearly unrelated
to our application, so those registry keys will be removed.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

J

49

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

S APE -+ Repackager Session YLC Media Player MSI PAckaging Book - Advanced Repackager 20.7 (64 bit)*
Home View Tools

Session

MS| Package ﬁ '. _%)‘1 @
> CEsy .
Mo Template [] MsIX Package [/ L B2 S

2] 2023-05-2912-54-20

- Build Trace Generate Open In Advanced
* [AP Package Msix App Report Installer
Templates Builds
Session | Details
Project

| Information [Digital Signature [Files and Folders 56 Registry [Z] system

Hive ||D name Type

~ @ HKEY_CURRENT_USER
~ BT SOFTWARE
v @ Classes
8 amr
[I
a8 apl
5 O Local Settings
v B Microsoft
v B Windows
~ @ CurrentVersion
v [J7 CapabilityAccessManage
~ [J77 ConsentStore
() userAccountinfor
v @ Explorer

> @7 FileExts
v (7 Ext
w [J77 Stats

~ (J70 {9BE31822-FDAD-
v O iexplore
~ [J77 AllowedDe

" Search
~ @ UFH
B sHC

> @ Windows NT
v @ HKEY_LOCAL_MACHINE

Data
B Terget machine [&) value REG_SZ Allow

The HKEY_LOCAL_MACHINE hive seems to be properly captured with only minor information
which is not needed, but during the setup some services were captured. We know for sure that

VLC doesn’t provide any services so these registry keys will be removed.

Eo Advanced Techniques in MSI Packaging

Powered by AdvancedInstaller.com

50

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

S HPE -~ Repackager Session VLC Media Player MSI PAckaging Book - Advanced Repackager 20.7 (84 bit)* - [u} x
Home View Tools Session
Msl Package =] d
B 8w D
Mo Template [] MsIX Package dild
i Build Trace Generate Open In Advanced
= [APpv Package Msix App Report Installer
Templates Builds
Session Details
Project] L -~ =]
& 2023-05-29 12-54-20 © Information Ij Digital Signature [T Files and Folders @& Registry System
Hive O Name Type Data
VLCPIZyVCDh | ([value REG_SZ Allow
VLCPlayVideo
- UFH

ARP
RegisteredApplications
v @7 WOWB432Node
> @ Clients
~ B Microsoft
v~ @ Windows
v @ CurentVersion
> @7 AppPaths
> @ Explorer
> (7 Uninstall
> &4 MozillaPlugins
RegisteredApplications

w [J7 CurrentControlSet
~ (77 Services
~ (J°2 bam
~ [State
~ [J7 UserSettings
(7 5-1-5-21-2047949
~v [J7 NcbService
~ [J7° NCBKapiNImCache
Oz

Because the application is recaptured, the uninstall registry is also captured. It is critical to
remove the registry associated with Uninstall information when repackaging; otherwise, two
entries will appear in the Add/Remove Programs section of the OS and the original one will
not work. The following are the locations of uninstall information:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall
HKEY_LOCAL_MACHINE\SOFTWARE\WOWG6432Node\Microsoft\Windows\CurrentVersion\
Uninstall

Jumping to the system tab, we have captured information in the following sections:
e Shortcuts
e File associations
e Default programs

Depending on the customer's request, you can remove any of the above mentioned items.
Typically, the best practice and most requested modification of the packages that has been seen
in the industry is to remove the application's desktop shortcut, so we will do the same in our
case.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 51

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

B HD E- - Repackager Session VL Media Player MS| PAckaging Bock - Advanced Repackager 20.7 (64 bit)*
View Tools Session
Msl Package ﬁ '.
Mo Template [] MsIX Package [>"
- Build Trace Generate Open In Advanced
7 [APy Package MsixApp Report
Templates Builds
Session | Details
Project

2] 2023-05-2912-54-20

& Information D’ Digital Signature UE Files and Folders B Registry @ System

Miscellaneous

[14 Shortcuts
Scheduled Tasks
£ users

f Msix Fixups
Environment Variables
2l Services

=) Drivers

o Assemblies

4t Firewall Exceptions
42 Firewall Options
[T File Associations
(@ Default Programs

|| patn

D[h DesktopFolder\VLC media player.Ink

8| ProgramMenuFeldenVideoLAN\Documentatio...
B[ProgremMenuFolder\VideoL AN\ Release Notes....
B[ProgremMenuFolder\VideoL AN\VideoL AN We...
B 5 ProgramMenuFolder\VideoL AN\VLC media pla...
8| 5 ProgramMenuFolder\VideoL AN\VLC media pla...
-[h ProgramMenuFolder\VideoLAN\VLC media pla..

Terget Path

ProgramPFilesFolder\VideoLAMWV...
PregramPFilesFolder\VideoLAMWV...
PregramFilesFolder\VideoLAMWV...
ProgramFilesFolder,VideoL ANV...
ProgramFilesFolder,Videol ANWV...
ProgramPFilesFolder\VideoLAN\V...
ProgramPFilesFolder\VideoLAN\V...

Operation
Added
Added
Added
Added
Added
Added
Added

Now is the time to define other file associations for which VLC is now marked, as well as other

default programs.

E Advanced Techniques in MSI Packaging
Powered by AdvancedInstaller.com

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

S APE -+ Repackager Session YLC Media Player MS| PAckaging Book - Advanced Repackager 20.7 (64 bit)* — [m] be
Home View Tools Session
Msl Package ﬁ ‘. r‘—, ‘g
. o}
Mo Template [] MsIX Package [L ﬁﬁt >
_ Build Trace Generate Open In Advanced
* [AP Package Msix App Report Installer
Templates Builds
Session Details
Project §
2023-05-29 12-54-20 |- information |4 Digital Signature [Files and Folders 5§ Registry System
Miscellaneous @ ProgiD Extensicns Operaticn
[T Shorteuts Bvicge 3gz Added
‘ Scheduled Tasks BTHViCs3m s2m Added
B Users BT VLC.nuy .nuw Added
A Msix Fixups BTvici it Added
Enwrunment\:’anables BT VLCmpeg2 mpeg? Added
= DE_N"eS BT viCxesc xesc Added
= A”"E’Sbl BvLcwes w4 Added
= Assemulies B VLCvoc voc Added
42 Firewall Exceptions
; B Vicamy amy Added
42} Firewall Options oT
T File Associations VLG w Added
@ Default Programs BTV g af Added
) BThvice6 563 Added
BMvicts s Added
B ViC.oge .0ga Added
BT ViCwmy WMV Added
BTvLCpl gl Added
BTHVLC.mpe .mpc Added
BTvic.as2 .a52 Added
BTvic.ach .a0b Added
BTV fav Added
BT ViC.ape .ape Added
BTHVicbds bds Added
BTV aife LAIFC Added
BTHVLcam xm Added
BTHvLcdre dre Added
BT vLC.bik bik Added

After you've cleaned everything up, you can open the resulting project in Advanced Installer by
clicking the button in the upper tab.

If you look closely, there are three types of builds available (MSI, MSIX, APP-V). For the
purposes of this tutorial we will only leave MSI selected, but check out the next chapter to
learn more about this feature.

Advanced Installer will gather all of the necessary resources and generate a new AIP project for
you to further customize or build the MSI.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 53

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

D HE-% - €« (8 < | VLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7 — o X

m Project View Settings Wizards 2]
=) o
> Mg e [[M

Build Cancel Run Runin Runin [] Debugcmdline Open Output Options Find
- VM~ Docker~ Folder

Build Run
Product Details
o
& product Details Software Identification [7°) ProductIDs g Active Setup
See Simple View ;-4
Product Details
Product Information
7 Neme: VL Media Player
%Y Product Details
§ Version: 3.0.18 Options
&‘«’ Digital Signature
Publisher: VdeoLAN
@ Updater
% Upgrades Product Support Info ®
@ Licensing Support Link:
Jo} Update Info Link:
Multiple Instances
Help Link:
Resources
. Support Telephane:
[Files ana Folders
Contact:
F Shorteuts
Comments: This Installer database contains the logic and data required to instal [IProductame].
3] Tiles
wn Java Products Add or Remove Programs (Control Panel) ®
'Bj Registry 18 Register product with Windows Installer
Control Panel icon:
[T Fie Associations
i Assemblies
[Disable Modify ([Disable Repair () Disable Remove () Do not show in list
5 Drivers [0 Override Windows Installer programs list entry
4l senices
Package Definition
S Use a single “Uninstall/Change” button instead of separate buttons for each operation
ﬁ' Install Parameters
[.
5 Organization End User License Agreement @
License:

Project Summary

@ Notifications

Multi_ple Builds

As mentioned earlier, once a repackaging operation is finished you can choose one or multiple
builds. Of course, you can create any additional builds in the AIP project. But what does that
mean?

If you plan to deploy the application via multiple methods or wish to upload the MSIX package to
the Microsoft Store, with Advanced Installer you don’t need to take multiple captures or create

multiple projects in order to achieve multiple builds of the same installation package, it’s all in
one project.

Taking that our VLC project is already opened with Advanced Installer, all you need to do is
navigate to the Builds page and click on MSIX Build on top. In the builds area a new
Build_MSIX will appear where you can perform further customizations.

Powered by Advancedinstaller.com 54

Eo Advanced Techniques in MSI Packaging

https://www.advancedinstaller.com/msix-publish-microsoft-store.html
https://www.advancedinstaller.com/msix-publish-microsoft-store.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

QI HE-% e3> @s] BuildTools VLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7 - D X

Project View Settings Wizards Builds 2]
A . E’j @ [Copy x %‘?‘ B8 Rebuild [> Run q
IR g i A e =¥
X B &' o= o cut %5 Cancel Run in VM
New MSl Mac AppV Thinipp MSIX Duplicate Delete Build Open Output How-to
Build Build~ Build Build~ Build Build Paste 4 Clean Run in Docker Folder i
‘Wizard New Clipboard Actions
Builds
o -
Settings [Configuration 54 App Installer [Tl Bootstrapper Eff BuildEvents |1} Optional Packages
£
GG B > (% Global Build Events
Builds
| 4 Muttiple Instances [DefauttBuild Output
() Build_MSIX
Universal Windows Folder: C:\Users\User\Documents\Advanced Installer\Projects\WLC Media Player MSI PAckaging Book Files\WLC Media Player4
W Package Information Name: VLC Media Player

| % Dependencies

! Packaging
| E Application Details
| b AppCompat Architectures: (Jneutral (Jx@s Bxe4 Oam Oarms4
Package:
S visual Asset
fsual Assels O Create individual packages for each architecture
S= Capabilities) Create a bundie with individual packages inside
Flat bund
) vectarations arounde
_ Distribution:
2] content uris
X O sideloading
|:| MSIX Diff O Unsigned Development
() Microsoft Store

[<&d, manifest Editor
- Add symbol fles

Resources
[Files anarolgers Target Platforms
P shorus Goskip i versen: Vsimun Tested Ve | Getaber 2072 pdate -
& Ties Dserver October 2018 Update - 1809 Windows Server 2022
(S Java Products
- Content
uj Registry
Applications Visual Assets Dedarations

D-_l‘ File Aszociations

o
= Assemblies

ats

Project Summary

@ Notifications

You can choose the architecture of your MSIX package, choose if you want a bundle for multiple
architectures or independent packages, select your distribution method, but also target
platforms and other important information such as Applications (shortcuts), visual assets and
declarations.

For example, Advanced Installer automatically detected that file type associations are included
in this package and everything has been included in the AppxManifest file for the MSIX
application. Clicking on the Declarations button which appears in the above screenshot, you will
be redirected to the Declarations page and all the FTAs will appear in the list.

Powered by Advancedinstaller.com 55

Eo Advanced Techniques in MSI Packaging

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O AB- B0

P €

Project View,

1]
I
Add Application Add Package
Dedlaration * Declaration =
Add

X

Delete

(=N

Settings

Wizards

| 0 Find

See Simple View

@ Updater

;} Upgrades

i uicensing

L4, muitiple nstances

Universal Windows

?’6 Package Information

% Dependencies
[T sopiication petails

~r> AppCompat

Visual Assets

S= capavilities

B‘j Declarations
5] contenturis

R wsixoir
Manifest Editor
Resources

[Files ana Folders
A sorcuts

[Ties

(b JavaProducts

Project Summary

v

LE media player

" File Type Associations
TY windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
TY windowsfileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati

&) Application Declarations Overview

Declarations Tools VLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7% - [m] x
Dedlarations ~ @
| Declarations
Supported Declarations
Application declarations a | USER GUIDE ADVANCEDINSTALLER.COM

On this page you can add one or more declarations for the app and specify their properties.

Declarations are a mechanism by which an app can add functionality in @ manner defined by the

operating system.

EE‘ To add a new declaration select the “Supported Declarations” tree and use the "Add
Declarations” context menu or the [Declarations] button from the ribbon.

7(To remove an existing declaration select it from the "Supported Dedlarations” tree and use the

“Delete” context menu or the [Delete] button from the ribbon.

T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
TY windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
TY windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
TY windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
TY windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTypeAssociati
T windows fileTvpeAssociati

For more detailed help, please press the F1 key.

@ 2002 - 2023 Caphyon Ltd, Trademarks belong te their respective owners. All rights reserved.

@ Notifications

Advanced Installer also detected the classical shortcuts present in the project for the MSI built

and automatically created the Applications for them.

Advanced Techniques in MSI Packaging

Powered by

AdvancedInstaller.com

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

DIRAE-% P> Bs Aappliction Details VLC Media Player - VLC Media Player.sip (English US) - Advanced Installer 20.7*

Project iew, Settings Wizards Application Details

| X

! @ Updater
;3; Upgrades
£ o
L4, muitiple nstances

Universal Windows
Fé Package Information
EE Dependencies
[T #oplication Details
~r> AppCompat

Visual Assets

Capabilities

g‘j Declarations

5] contenturis
R wsixoir
Manifest Editor
Resources

[Files ana Folders
A sorcuts

[Ties

(b JavaProducts

Project Summary

Details

Ne Delete
Application
New
Application Details
| O Find | Pp
Il See Simple View 2 VLC media player

VLC media player - reset preferences and ca
VLC media player skinned

General
D: VLCmediaplayerskinned
Display name: VLC media player skinned
Desaription: VLC media player skinned
visual Group:
AppList Entry: Not Specified ~
() Multiple Instances
(0 Console Appiication
() set as Default Application
Start Point
ONane
© Application is compied
Executable: APPDIR e, exe
Entry Point: Windows.FulTrustapplication
Parameters: Iskins

Working directory: APPDIR

Run mode: Normal
Trust Level: Not Specified ~
Runtime Behavior: | Not Specified ~

() Application is HTML -based

Start Page:

Supported Rotations

& Landscape I I (CLandscape-fipped | |

®

@ Notifications

Keep in mind that M

IX migration limitati

exist and in some cases further workarounds must
be applied or the solution might not work (as in case of drivers for example).

E Advanced Techniques in MSI Packaging

Powered by

AdvancedInstaller.com

57

https://www.advancedinstaller.com/msix-migration-limitations-and-solutions.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Further application customization

Advertised Shortcuts

Significance of Advertised Shortcuts

An advertised shortcut is a pointer to a file or folder that is installed by an MSI package. When
running an advertised shortcut, Windows Installer first checks that all the components of the
respective feature are installed before running the file. If any of the components are missing,
Windows Installer repairs the installation by installing the missing components. This ensures
that the application remains consistent and that all of its features are available when required.

The best is to keep in mind the following about advertised shortcuts:
e When running an advertised shortcut, Windows Installer first checks that all the
components of the respective feature are installed (before running the file).
e The target of the shortcut must be present in the package.

What is to take is that if your application contains multiple features, but the shortcut is available
only on one feature, then during the self-healing process only that feature will be checked if all
the components are properly installed on the machine.

For more information regarding shortcuts, check out our first MS| Packaging Essentials
ebook.

What is Self-Healing

The MSI (Microsoft Installer) self-healing mechanism is a powerful feature that ensures the
integrity and availability of installed applications. It is intended to detect and repair any missing
or corrupted files, registry entries, or other components of an application, preserving the
application's functionality and preventing potential problems.

When an MSI-based application is installed, Windows Installer creates a comprehensive

installation database known as the installation package or MSI package. This package contains
all of the resources and information needed to install and maintain the application. Files,

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 58

https://www.advancedinstaller.com/application-packaging-training/msi/ebook/inside-structure.html#_idTextAnchor025
https://www.advancedinstaller.com/application-packaging-training/msi/ebook/inside-structure.html#_idTextAnchor025
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

registry entries, shortcuts, components, and other configuration settings are all included. This
small MSI is also known as the “cached MSI” and can be found in the %systemroot%\installer
folder.

Important mention: manual interventions in the Installer folder should never be done. For

more details about the Installer folder, check out the Do not delete your Windows Installer
folder article.

Specific events, such as the launch of an application, the opening of a document associated
with the application, or the invocation of a Windows Installer action such as repair or modify,
initiate the self-healing process. When any of these events occur, Windows Installer validates
the application's integrity by comparing the recorded installation information to the current state
of the system.

When the self-healing mechanism detects that a file, registry entry, or other component
associated with the application is missing or damaged, it begins the repair process
automatically. Locating the original installation source (usually the installation media or a
network location) and restoring the missing or corrupted components is the first step in this
process.

Windows Installer follows a predefined sequence of steps during the repair process:

1. Verification:The digital signature of the installation package is checked by Windows
Installer to ensure that it is authentic and has not been tampered with.

2. Component Detection: By comparing the recorded installation information with the
current system state, Windows Installer determines which components are missing or
damaged.

3. Source Resolution: The installation source is attempted to be located by Windows
Installer by referring to the original installation media or other specified locations.

4. File and Registry Restoration: Windows Installer uses the installation package's source
files to replace missing or damaged files, registry entries, and other components.

5. Reconfiguration: Windows Installer reconfigures the repaired components, restoring any
necessary settings or dependencies.

When the repair process is finished, the application is returned to its original state, with all of the

necessary files, registry entries, and settings in place. This ensures that the application works as
expected and that any missing or damaged components are completely restored.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 59

https://www.advancedinstaller.com/do-not-delete-windows-installer-folder.html
https://www.advancedinstaller.com/do-not-delete-windows-installer-folder.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Important note: the self-healing mechanism in MSl is dependent on the original installation
source being available. If the installation source is not available, the repair process may fail,
requiring manual intervention to restore the application.

MSI's self-healing mechanism offers numerous advantages:

e Maintenance: It makes application maintenance easier by automatically repairing any
issues that may arise as a result of file corruption, accidental deletion, or system
changes.

e Data Integrity: It contributes to data integrity protection by ensuring that applications
have access to the necessary files and resources. This prevents application crashes,
data loss, and other problems caused by missing or corrupted components.

e User Experience:lt improves the user experience by restoring application functionality
without the need for manual intervention or reinstallation.

However, to ensure that the self-healing mechanism works properly, the installation package
must be properly configured and tested. This entails precisely specifying the dependencies, files,
and registry entries that are required for the application to function.

In summary, MSI's self-healing mechanism is a critical feature that automatically detects and
repairs missing or corrupted application components. It ensures smooth operation and helps
prevent potential issues caused by component-related problems by maintaining the integrity and
availability of applications.

Properties in MSI Packaging

Properties are used in MSI packaging to define and customize various aspects of the installation
process, such as installation location, product key, and installation options. MSI properties are
classified as public or private based on whether or not end users can access them.

Public properties are those that users can access and modify during the installation process.
These properties are usually defined in the MSI database's Property table and are used to store
values like the installation directory, product name, and version number. When launching an
installation, public properties are frequently specified on the command line, or they can be set
using a transform file (.mst).

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 60

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Private properties, on the other hand, are used internally by the installer and should not be
changed by end users. These properties are typically used to control the installer's behavior and
are hidden from users during the installation process. Private properties, which are typically
defined in the MSI database's CustomAction table, are used to control the execution of custom
actions, install sequences, or logging behavior.

MSI properties are typically stored as string values rather than integers or Boolean values
when they are defined. Values are thus stored as text strings and must be converted to the
appropriate data type as needed. A property that stores a version number, for example, could
be defined as a string value but would need to be converted to a numerical value before
performing arithmetic or comparison operations.

MSI comes with a plethora of built-in properties for defining various aspects of the installation
process, including directory properties. The following are some of the most frequently used
properties in MSI:

e ALLUSERS: Specifies whether the installation is for all users of the machine (1) or only
the current user (2).

e INSTALLDIR: Specifies the default installation directory for the application.
INSTALLLEVEL.: Specifies the installation level, which controls which features are
installed during the installation process.

e REBOOT: Specifies whether a reboot is required after installation (force, suppress, or
prompt).

TARGETDIR: Specifies the target installation directory for the application.
USERNAME: Specifies the name of the user performing the installation.
e USERPROFILE: Specifies the user profile directory for the current user.

MSI also supports the creation of custom properties that can be used to define other aspects of
the installation process in addition to these built-in properties. For example, you could define a
custom property to specify a product's license key or a custom installation path.

When working with directory properties, it is critical to understand that MSI organizes files and
resources using a hierarchical directory structure. The INSTALLDIR directory is at the top of the
directory structure and is where the application is installed by default. Other directory properties,
such as TARGETDIR and APPDATA, are used to specify specific directories within a larger
directory structure.

It is important to understand these base concepts, as we will dive deeper into this topic later
down the road.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 61

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

For more details about Properties, check out our first MSI Packaqging Essentials ebook.

Custom vlc settings

Now that we've captured and repackaged VLC Media Player as an MSI, we need to figure out
how to detect and implement any custom settings that may be required for this application.

In this example, we will look at the number one rule when it comes to repackaging applications
in an enterprise environment: always disable automatic updates.

There are multiple ways in which we can detect where the settings of the application are stored,
such as:

e Using Advanced Repackager with Session Monitoring

e Using Process Monitor

e Using other 3rd-party tools, such as Systracer

We have already covered in the MSI Packaging Essentials book how you can detect the settings
of VLC Media Player with Systracer.This basically acts exactly like Advanced Repackager and
captures two states of the system and displays the difference between them.

We already looked at how to use Process Monitor to detect if an EXE contains an embedded
MSI; we can do the same to detect where VLC Media Player writes its settings, but some
additional settings must be performed in the filter section:

e Launch Process Monitor: Open Process Monitor from the Start menu or the shortcut on
your desktop.

e Configure filters: Before monitoring the installation process, it's helpful to set up filters to
narrow down the captured events and focus on the relevant activities. Click on the "Filter"
menu, and then select "Filter..." to open the Filter dialog box.

e Under “Display entries matching these conditions” select “Process Name”, “is”, “vlc.exe”,
then “include”. Click on Add

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 62

https://www.advancedinstaller.com/application-packaging-training/msi/ebook/inside-structure.html#_idTextAnchor031
https://www.advancedinstaller.com/application-packaging-training/msi/ebook/additional-tools.html#_idTextAnchor106
https://www.advancedinstaller.com/application-packaging-training/msi/ebook/additional-tools.html#_idTextAnchor106
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

¥ Process Monitor Filter =

Display entries matching these conditions: !

Process Mame s e | vlc.exe v| then Include e

Feset Bemove

Relation Walue Action

[
[=3
E
3
3

Process M. is vic exe Include

is Procmaon exe Exclude
is Procexp exe Exclude
is Autonuns. exe Exclude

Process M.

Process M.

Process M.

is ProcmonB4 exe Exclude
is Procexpbd exe Exclude [
is System Exclude

Process M.

Process M.

000000
(XXX XL

Process M.

[9]8 Cancel Apply ,

Click OK and start the capture process
e Open VLC Media Player and go to Tools > Preferences and implement the desired
configurations. Close the preferences and close VLC Media Player

After we have completed all of these steps, we can see at the bottom of the Process Monitor
capture that VLC Media Player created and modified the file vicrc, which can be found in
%appdata%vlc.

B Process Moritor - ysinemals winwsysinterals com
Fle Edt Gt Fiter Jook Options Help

BE\EZNIHVI.A{?P =)

Tie PD Rest Dot
2185, =0 - NANE CO vonse, Dsposto: rste, stons: Droc (Open Repare Pt Atsutes: . Srebode:Fad. Wi, Mlocationizs: 0
2165 =w ey Descaton: O tnges-r/a, Sraroblode: R, Vi, e, A

2163 = pered 128330, Festrtutes: 0

213 = Sy

2165 192 = e U oot Rosing Desied Access Resd Dt/ Lt Doy Sychronie, Dsposiion Cese, Optans: Dty Synchvonous 0 Non A, Open Reparse P, Atutes N, S Read. Wi, NocaionSie 0
2185 20152 Crtcfle Clser\UseronDita Rooming S fces, P A, Dmrcon Cpn, Colers o e P, e, S R, 140 Dt Acaton /s, Oyt s

2165, 26152 5 GumyBascfor. C:\User\UseropDita Foaming 1204 023 62449 P1, Feseros: D

283, 212 2 Cosefie e s

23 = e s oDt Foamng v vonze, Dapos Drec B N, Sraebode: Rasd. Vi, Mocaionize
2165 = \Progam Fies VoL AN\WIC potistle Desied Access: cad Abuts, Dston Open, Optons. Open Fepare P, Albues: /. ShareNode:Fead Vit Dlte, AocaionSi:n/a

2165 =9 C e Dt oo e /Lt Do S, Dt Gl Gt Dt S 0 Nt e e ot At 1. Surloe: s, W, AocatrSi 0
2185 219 = ClienUser S fces, P s, Dmoston G Ot o g P, e, Sl P Dt Mcsonae o Cpefe 0

2183, i e ler 1283300, 712 o, o 5557 . Coge T 185987 e 5

23, =0 A

des: . SoreMods:Read. Vi, Mocationize 0
Do e P st nmm v O Ove e o At /5. oo P . e Mnmnnsm o O
e

Fittrbites: D
FlfomatonGss:FeBoDrecoyiomaton. Her vors 2 e
-

= Desied fccess Generc Wi, Read tes, Deposton Overte, 10 Nor-Aet. o DrecicyFe, Aates. . Shr i Read, Wi, AlocatonSae . Oeniies.Ceted
2165 A i s\ 23132 Gt O Longh 1065 ey o
2183, €U\ Use oDt Roaning v Wi 28152 58 o 5 oyl
23, e\ User A it Foaming e 28192 G 2158 Lo«
23 s\ oDt Foariog i 28152 Gro 12288 Leogh 4036

CUkr LA oDt Roaming v Wl 28152
o o

Ofisct 16.384. Longh 4096, Precty. o
€U\ v 1 260, Lonth

Lengh: 4096 Proy: Nomal
Ofet 24 575, Longh: 4096
Ofiet 28572, Longh: 4056

52,758, Longh 4056

2165 U \Use oDt Roaing i vl 28152 36364, Longh 405
2165 Users\ s i Dete Roaming v e 28192 20360, Lengh: 2056
2185 CUsers s fgoDats Roaming v i 20152 45056, Lengh: 056
2183, s\ oot Roaring v Wl 28152 45152 Lo

283, Users\Usar AooData\Foaminghic i 25152 53248, Langih: 4056

577344, Longih 4055

2165 a 61,880, Longh 4%
2185 €U s\ oDt Foing v e 21 65536, Longth 409, Piey. o

2165, Cilsre s oDt Foaring v i 26152 G652 L 458 Py o

2183, \UseSonData\ Roaming v Wi 28152 et 73725, Langh: 4096, Py el

23 e\ Usr A it Foaming v e 2812 7725 Lo 4038 ey o

2165 e pDsta\Rotighc o 26152 & 405 Nomal

2165 Uses\User et Rosingvic i 28152 B6.076.Longh 409, Precy. Nomel

2165, €U\ Use\ gDt Roaming v e 281 4056, Py: Nomal

2183, €U Use oDt Roaning v Wi 28152 94208, Longh: 2671, Picy: Nomal

283, Users\Usr Ao Data\Foamingic s 26152

23, Lo e oDt Flosmingvc i 26152 0 Leng: 53.304, O ags: Non-cached. Paging 10, yoncus Paging 10, Pray:Nomal

2165 Lses\User Ao Data\Rosmingic o 26152

2165 €U s sooDats Roaming v Wl SUCCESS Desked Access: s Atbues, Dete, Disoston Open, Ol Dictry P, Cpen e Pt Xt /s, Shrelloce: e, Wit Delte. AlocationSize: /s, Openfesu. Cpened
2165, €U\ Use oDt Roaring v Wi X eTag: 00

| 2165 €U\ Use oDt Roaming v Wi SUZCESS Fiags FLE DISPOSITION_DELETE, FILE_DISFOSITION_POSIX_SEMANTICS

23 e\ Usr A it Foaming e Suce:

23 Ui \User Dt Rosminghvc vl 26152 SUCCESs Dot Acos e At Bt Sy Ciposon Gpn Gt Scert O . At Shloe M. snSu s, O Opred

2165 s oo i 26132 SUCESS Gration Lot 67 it 67 angeTne Fletvbutes

2185 UserooDsto\Rosmingvic SUCESS DosestenOoen, O o S Pea i, e, Aot

2163, -snnm.m vt anm;\wcwmzmﬁ success

ALses Lo\ Det Roaming

|Showing 1380 483218 cenn(o23%_ ckuy vialmemory

Advanced Techniques in MSI Packaging
Powered by AdvancedInstaller.com

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

If you want to use Advanced Repackager, follow the same steps as when we started the VLC
Media Player repackaging process, but instead of selecting an executable, check the Session
Monitoring checkbox. At the end, Advanced Repackager will identify the modified vicrc.

Custom settings implementation in the package

Now that we know which file needs to be added to the package, we can simplify our repackaged
project that we did earlier, navigate to the Files and Folders page and under the Application Data
folder, create a new directory called vic and add the vicrc file. You can also include the
vlc-gt-interface.ini and ml.xspf, and the project should look something like this:

D HB-X PP o€ > @B Files And Folders Tools VLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7° - o X
Project View Settings Wizards Files, Folders and Shortcuts (2]
- - + Add Temporary Files ~ Copy 7 [i
oo e mDE : gL' @& & o
BB @ [import Files X cut : MainFeature
Add Add . N Delete Properties Hash Ignere Refresh Goto MoveTo Move To Condition _ Howto Visible
B - - Folder Files = g Add Dependencies Files Attributes Component Companent Feature Files T Videos members~
Wizard Hew Add Clipboard Options Adtions Feature
° Files, Folders and Shartcuts Quearch files
Folders Name Size Type
See Simple View z [Target Computer £ mlaxspf TKB XSPF|
~ T Application Felder] vic-gt-interfaceini 6KE Conl
hrifs [vlere 95KB File

Product Information >
. I
=9 Product Details ’ ue
> 7 plugins
> skins

locale

[/ oigital signature
@ Updater >
-t} Upgrades 5
E} Licensing

=}
i Muttiple Instances

> Start Menu
~ 7 User Profile

Resources

[Files anaFolders

w 7 Application Data
F Shortcuts

vie
(3 Tiles

s Java Products
S
i Registy

[T} File Associations

g Assemblies

=g
= Drivers

4l seniices
Package Definition

] mstai Paramters

[
= Organization
[-1-1-]

Project Summary

Full path: AppDataFolderivic

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 64

https://www.advancedinstaller.com/user-guide/files-folders.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

When it comes to installers, however, working with user files or the registry is more difficult.
When an application is deployed in an infrastructure using any infrastructure management tools,
the NT System\Administrator account is used. This is the most privileged account available.

One of the golden rules when it comes to installation testing as an IT Professional is to always
test your applications using the PSExec utility. We have a more in-detail look over this topic in
the MSI Packaging Essentials book and you can check it here, but if we would leave the installer
as it is right now, the settings won't reach the logged on user or any user that is using that
particular computer, because the settings will only be populated within the NT
System\Administrator account files.

This is where advertised shortcuts come into play. When working with Windows Installer, one
important concept to understand is the concept of advertised shortcuts.

Advertised shortcuts are a feature provided by Windows Installer that allows for the dynamic
installation and repair of applications. In the following, we will explore the concept of advertised
shortcuts, how they work, and best practices for utilizing them effectively.

Advertised shortcuts serve two main purposes: advertisement and resilience. Let's take a closer
look at each of these points.

When an advertised shortcut is launched, Windows Installer validates that all the components
included in the same feature as the shortcut feature are installed on the device. This is
accomplished by determining whether their keypaths, which represent the critical resources for
each component, are present. If a component is missing, Windows Installer launches the
installation package and reinstalls all required resources from the.msi file. This ensures that the
application has been completely installed before being launched.

To create an advertised shortcut, the resource it points to in the Component table must be
designated as a KeyPath. A KeyPath is a resource that represents the feature's core component.
Once a resource has been designated as a KeyPath, it cannot be moved to another component,
and no other resource can be designated as a KeyPath for that component. This ensures that
the advertised shortcut works properly and, if necessary, initiates the installation process.

Another advantage of advertised shortcuts is their resiliency. When the user clicks on the
advertised shortcut, Windows Installer automatically triggers a repair of the application if any of
the keypaths associated with the components are missing or corrupted. This ensures that the
application will continue to function even if critical resources are compromised.

To take full advantage of both advertisement and self-healing, it is important to adhere to
certain best practices:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 65

https://www.advancedinstaller.com/application-packaging-training/msi/ebook/repackaging-recommendation.html#_idTextAnchor081
https://www.advancedinstaller.com/user-guide/advertised-shortcuts.html
https://www.advancedinstaller.com/application-packaging-training/msi/ebook/shortcuts.html#_idTextAnchor025
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Set all features' states to Advertise: It is recommended that all features be set to
Advertise. While having only one feature is preferable, if multiple features are required,
make sure that all of them are set to Advertise. This ensures that the required resources
are correctly installed when the application is launched.

Advertise all shortcuts: All shortcuts should be advertised in order to enable the dynamic
installation and repair process. This is accomplished by checking the "Advertised
shortcut" checkbox in the Shortcut Properties view during the shortcut's creation.
Assign a keypath to all components: Each application component should have its own
keypath. The keypath represents the component's critical resource and assists Windows
Installer in validating the installation and initiating repairs if necessary. To ensure proper
functionality, it is recommended that you follow Microsoft's general rules for organizing
resources into components.

By following these guidelines, you can harness the power of advertised shortcuts to provide
your users with a dynamic and resilient installation experience. Advertised shortcuts make
application deployment and maintenance easier by ensuring that all necessary resources are
installed correctly and that repairs are triggered when necessary.

Because all the files used by the shortcuts are included in the MSI package, we can navigate to
the Shortcuts Page and for each shortcut available in the package we must enable the

Advertised Shortcut checkbox.

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 66

https://www.advancedinstaller.com/user-guide/shortcuts.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

QIHE-
Project

ile File
New

)
See Simple View

Product Information

%9 Product Details
E Digital Signature

£D) upsater

& Uporades

§p Licensing

“. Multiple Instances
Resources

[Files ana Folders

A shorteuts
[Tiles

5 Java Products
af
i Registry

[Ty il Associations

P::, Assemulies

5 Drivers

3l senices
Package Definition
] mstan Parameters
s Organization

Project Summary

X aBEd o

Wizard Installed External Uninstall Folder URL
F

Shorteuts Tools YLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7%

Wizards Shorteuts

Goto MoveTo MoveTo
Component Component Feature

#* & X

Delete

Actions Clipboard

Shortcuts

Shorteuts List

Name Target Folder Component
Moo IdertVi.. Do

] Release Notes ProgramMenuFoldertVi.. NEWS.txt
" VideoL AN Website .. Videol/

4 VLC media player ProgramMenuFoldertVi.. vic.exe

4 VLC media player - re.. ProgramMenuFolden\Vi.. vic.exe

4 VLC media player ski.. ProgramMenuFolden\Vi.. vic.exe

o
Properties
General
Name: e media player
Description:
Hot Key: ‘Nune
Pin to taskbar: After Installation <
Mot pinned immediately. User can pin manually. Learn more
AppUserModel.ID:
8 Advertised shortcut (OJRun As Administrator
(] Prevent auto Pin to Start
Arguments
Paths
Shortcut target: APPDIRWlc.exe
Shortcut folder: ProgramMentFolder \VideoL AN
Workng drectory: APPDIR Edit...| v
Display
Tcon:
Run made: Normal v

When the package is installed and a user opens a shortcut, the MSI will perform a self-healing
action and copy the previously placed files to the currently logged in user profile.

However, while this solution may work, it does not represent industry best practice, and we must

consider some other issues that may arise if we place user data in this manner.

Best practices for user data

Because of the way MSI packages are cached in the OS once they are installed, the above

solution may not be the best suited to cover all cases when it comes to user data in the form of

files.

If you've ever looked through your Windows system directory, you might have noticed a folder
called "Installer" in the C:Windows directory. This folder, which is frequently overlooked, plays
an important role in Windows Installer technology by storing cached copies of MSl files.

The cached MSI files in the C:\Windowsl\Installer folder serve several important purposes:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

67

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Repair and Maintenance: When an installed application has problems or becomes
corrupted, Windows Installer uses the cached MSI files to repair it. This ensures the
application's proper operation by restoring missing or damaged files.

e Uninstallation: The cached MSI files are used to completely remove the application

from the system during the uninstallation process. To reverse the installation and remove
all associated components, Windows Installer accesses the original installation package

stored in the Installer folder.

e Patching: When updating or patching an installed application, Windows Installer uses
the cached MSI files to identify the installed version and apply the necessary changes.
Patch files, which are used for incremental updates to installed applications, are also

stored in the Installer folder.

However, an MSl is not fully cached into the C:\Windows\Installer directory; instead, the files are

removed during the caching process to save hard drive space.

If we use the above solution and delete the MSI from where it was originally installed, this
operation will fail and the user will not have the VLC Media Player preferences copied in his
profile when he opens the shortcut and the self-healing mechanism starts.

&

Fl0l The feature you are trying to use iz on a

hedF= network resource that is unavailable.

OK

Cancel

Click QK to try again, or enter an atemate path to a
folder containing the installation package
o_rurtime Minimum_x64 msi' in the box below.

Use source:
|C:'—-.P'n:-gram Data'Package Cache \{D093C20C-27, ~ | Browse. ..

If the user data files are not correctly implemented, the only way for the self-healing mechanism

to work is to browse to the MSI, which means copying it again on the computer.

There are several approaches we can take in this situation, but the following two will usually

suffice:

e Move the files to a per-machine location and copy them to the user profile using a

custom action, keep the advertised shortcuts enabled, and add a dummy registry key to

HKEY CURRENT USER.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

68

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Move the files on a per-machine location and copy them in the user profile by using a
custom action, turn off the advertised shortcuts, insert the Active Setup mechanism

Both methods rely on a per-machine location for the user files and a script that copies them.
Let's look at each scenario and see how we can configure it.

Scenario one: Advertised shortcuts

We already have the advertised shortcut option on all of the shortcuts, so we'll keep it that way.
Let's start with the simple part of this implementation: add a random HKEY CURRENT USER
registry key if it isn't already present in the package. In our case, VLC contains the following
user registry keys:

O HE- - ¢ > @B RegistryTools VLC Media Player - VLC Media Player.zip (English US) - Advanced Installer 20.7+ - [u} X
“ Project View Settings Wizards Registry 2]
- 5 =
m— L. Pﬁ, =z o
L— = ot H MainFeature
Uninstal New @ e alue Add Add Import Export . Delete Properties Show COM Goto ove ove To - How-to
Key Value Removal Key Values REG™ REG &= Registry ponent Co ure T Videos
Wizard New Add Import | Export Clipboard Options Actions Feature
Registry Qusearch Registn
o gistry
Hive Name Type Data
See Simple View 2 B8 Terget Computer
> [@C
> B HKEY_CLASSES §
Product Information ~ HKEV_CURRENT_USER

. v T Software
%9 Product Details ;

| E,I‘ Digital Signature

i C
@ Updater ~ 77 Microsoft
~ 7 Windows

& uroraces v 7 CurentVersion

@ Licensing

LY Mutiple Instances

Resources

[Files anarolgers >

A shorcuts =
4 Tiles

s Java Products

i ;
Wl Reaistry

D-_l‘ File Aszociations

r:,, Assemblies

=
= Drivers

=

il senices

Package Definition

&1 imstall Parameters

[

. Organization
LT
Project Summary

Full registry path: HK_UM

We need user registry keys so that the self-healing mechanism detects their absence when a
user launches the shortcuts and initiates the actions. When the self-healing mechanism kicks in,
it also considers the custom actions in the sequence.

The user data files are then moved to a per-machine location. To do so, go to the Files and
Folders page and create a new folder called UserData under the Application Folder, then drag

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 69

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

the previously created vic folder under the Application Data and drop it under the newly created
UserData. At the end, it should look like this:

QD HE-% P € @ = Files And Folders Tools VLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7% - o x
“ Project View Settings Wizards Files, Folders and Shortcuts (2]
a® - [B-B ke [Add Temporary Files = [[Copy ?(E' Ej @ dm 4= n I@

) 2
a G-H @ = [¥ import Files = 4 Cut v ELF' > MainFeature

Add Add . R Delete Properties Hash Ignore Refresh Goto MoveTo Move To Condition _ Howto Visible
BB - B Rt EE=T Fi Feature Files ¥ Videos members -

~ Folder Files~

Wizard Hew Add Clipboard Options Actions Feature

iles Attributes Component Component Feat

Files, Folders and Shorteuts Quearen fites

Folders Name Size Type
See Simple View z [Target Computer & mlispf 1KB XSPF|
v = Application Folder 5] vic-gt-interfacedni 5K8 Conf

hrifs [viere 95KB File

Product Information locale

] lua
% Product Detalls

[Dital signature skins
UserData

@ Updater vie
-:% Upgrades >
& >
]b Licensing >

<]
i Muttiple Instances

>
>
> = plugins
>
-

Resources ~ T Start Menu
~ 77 Programs

E Files and Folders VideolAN

A shorcuts o
(3 Tiles

s Java Products
a
il Registy

D-_'-‘ File Azzociations

@ Assemblies

fag

=) Divers

4lh, seniices
Package Definition

&1 instalt Paremeters

[)
-~ Organization
L]

Projsct Summary

We can now be certain that the files that must be copied on each user profile are always present
on a per-machine basis, and that the files will be available even if the MSl is deleted. The final
step is to create a custom action that copies the files from the UserData folder to the
%appdata% folder.

As usual, we can do this either with VBScript or PowerShell. The code for the VBScript:

Dim objFSO, objShell
Set objFSO = CreateObject ("Scripting.FileSystemObject")
Set objShell = CreateObject ("WScript.Shell")

Dim sourceFolder, destinationFolder, programFilesPath, appDataPath

programFilesPath = objShell.SpecialFolders ("ProgramW6432")
appDataPath = objShell.SpecialFolders ("APPDATA")

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 70

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

sourceFolder = programFilesPath & "\VideoLAN\VLC\UserData"
destinationFolder = appDataPath & "\VLC"

' Copy the folder and its contents
objFSO.CopyFolder sourceFolder, destinationFolder, True

Set objFSO = Nothing

The following actions are carried out by the code snippet:

e Creates objects for the FileSystemObject and WScript.Shell to access file system
operations and special folder locations.

e Retrieves the paths for the Program Files folder (ProgramW6432) and the AppData
folder (APPDATA) using the SpecialFolders property of the WScript.Shell object.

e Constructs the source folder path by appending the desired subfolder path (in this case,
"\VideoLAN\VLC\UserData") to the Program Files path.

e Constructs the destination folder path by appending the desired subfolder path (in this
case, "\VLC") to the AppData path.

e Uses the CopyFolder method of the FileSystemObject to copy the entire contents of the
source folder to the destination folder. The third parameter (True) indicates that the
operation should overwrite existing files if necessary.

e Releases the resources by setting the FileSystemObject to Nothing.

Then, launch Advanced Installer and go to the Custom Actions Page. Look for the Launch

attached file and select the VBScript's location. Then, as shown below, configure the custom
action to execute:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 71

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

QI HE- % P e > @s Custom Actions Taols VLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20,7 - u} X

“ Project View Settings Wizards Custom Actions 2]
4 = . @
A 0% - oy 3@ [Copy ?(
B B i ,~.|,¢ @
N o LG - =i Yocut o

MNew Custom Aftached Installed ~ Show Standard Sequence Move Delete How-to
Adtion File File Adion Share e Videos

Wizard Launch Clipboard
Custom Actions
o
Add Custom Action | Existing Custom Actions Launch Attached File
See Simple View &)
= Properties
F, Verge Wodules Launch attached fil @&
Launch installed fle Attached file: Ci\UsersiUser\Desktop\copyfolder.vbs
User Interface
- Launch file from property File type: Visuel basic script (*.vbs) v
) Themes Launch EXE with working directory
[Function:
| D Dial Launch file
ialogs
NET Instaler Class action Action data:
Slideshow Taur hE. ot be insialed on [Digitally sign file at build tme
o ‘e targ
Ag| Translations
Installation Sequence Execution Time @
System Changes
Y 9 Show: AN Instal Uninstal Maintenance O 1mmediately
Environment Wizard Dialogs Stage (O Wihen the system is being modified (deferred)
p O i
G) Scheduled Taske & searches O)During instalation rollback
@ paths Resoluton () After the system has been successfuly modified (commit)
) windows Firewal N
% User Selection @
e Execution Options
Users and Groups
L Install Execution Stage
o
B cou & searches
Server G Paths Resolution
. & Preparin Actior
s :D paring \ction Text.
d % Remove Resources
& ooec & AddResources
= Execution Stage Condition
& soLabases e copyfolder.vbs Move g ditior ®
- {3 Finish Execution @ nstal (Dininsta (@ Maintenance Show upgrade options
Custom Behavior P
Finish Dialogs Stage Condition:
,O Search Advanced execution scenarios...
[V=] Properies
&} custom Adtions

[Table Editor

Project Summary

The code for the PowerShell script:

Sprogramfiles = Senv:ProgramW6432

Sappdata = Senv:APPDATA

SsourcePath = Sprogramfiles + "\VideoLAN\VLC\UserData"
SdestinationPath = Sappdata + "\vL.C"

Copy the folder and its contents recursively
Copy-Item -Path SsourcePath -Destination SdestinationPath -Recurse -Force

The following actions are carried out by the code snippet:

e Retrieves the values of the Program Files directory and the AppData directory using
environment variables (Senv:ProgramW6432 and Senv:APPDATA).

e Constructs the source folder path by appending the desired subfolder path
("\VideoLAN\VLC\UserData") to the Program Files directory.

e Constructs the destination folder path by appending the desired subfolder path ("\VLC")
to the AppData directory.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 72

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Uses the Copy-ltem cmdlet in PowerShell to recursively copy the contents of the source
folder to the destination folder. The -Recurse parameter ensures that all files and
subdirectories are copied, and the -Force parameter overrides any restrictions that would
prevent the copying operation.

e The files and directories from the source path are copied to the destination path.

Then, launch Advanced Installer and go to the Custom Actions Page. Search for the Run
PowerShell script file and select the PowerShell script's location. Then, as shown below,
configure the custom action to execute:

DI HE-X% - € > @+ Custom Actions Toals VLG Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7% - O X
m Froject View Settings Wizards Custom Actions 2]
o oy = . . Col
Y 0% fn,‘ o])P S@| Bl x
= o Lo . 2 oo o
New Custom Attached Installed Show Standard Sequence Move . _ Delete How-to
Action File File Action Share Faste Videos
Wizard Launch Clipboard
Custom Actions
o
Add Custom Action | Existing Custom Actions Run Powershell Script File
S
See Simple View 2 O power x
[> | Parameter values:
¥ 1erge Modules Run Powershel inline script.
L e —~
Run PowerShell seript file & & (O seript from disk
User Interface
X3 Themes
i — © Attached script
[=] pialogs File source: Ci\users'User \Desktop\copyfolder.ps 1
Slideshow Run & Windows PowerShel saipt e on 0 Garget computer, eomershel St Gptiors
Az Translations i
Installation Sequence Execution Time ®
System Changes
show: All Install Uninstall Maintenance O Immediately
Emvironment Wizard Dialogs Stage (0)When the system is being modified (deferred)
G) Scheduled Tasks & searches (O During instalation rolback
() After the system has been successfuly modified (commit)
) windows Firewal
n
el E tion Opti
Users and Groups xecution Options
L) Instal Execution Stage
55] con Run under the LocalSystem account with full privieges (no impersonation)
! -
i Searches Wait for custom action to finish before proceeding
Server ths Resolution 8 Fail installation if custom action returns an error
IS (.,« “perra Action Text.
d % Remove Resources
8 ooec @ AddResources
G s0Lossbazes 3 Powershelscrptrie Move Execution Stage Condition ®
- {53 copyfolder.vbs Binstal (CIininstait @ Maintznance Show upgrade options
Custom Behavior @ Finish Execution
Condition:
| oo search Finish Dialogs Stage Advanced execution scenarios...
[V=] Properties
& custom Adtions

[Tabte Editor

Project Summary

Scenario two: Active Setup

The only difference between the two scenarios is that in the active setup case, we disable the
advertised shortcuts and do not require any other HKCU registry keys.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 73

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

After you've disabled the advertised shortcuts, go to the Product Details page and look for the

Active Setup tab.

O HE % Lo 3> € - (3 5| VLC Mediz Player - VLC Mediz Player.aip (English US) - Advanced Installer 20.7% u] X
Project View Settings Wizards (2]
=) o
R P E———
Build Concel Run Runin Runin [pebugemdline Open Output Op
b VM~ Docker~ Folder
Build Run
. Product Details
L fin
& product Detals Softnare Identification (72 ProductDs B Active Setup
See Simple View -4
Commands
Product Information
UniqueD = Display Name Locale Stub Path Is Installed New.
%Y Product Details " ey
, Edt...
| E’ Digital Signature
|
@ Updater
ﬁ’ Upgrades Delete

o uicensing

<& Multiple Instances
Resources

[Fites ana Foiders

A shortauts

3] Tiles

b Java Produdls

i Reoisty

[T Fite Associations

» ;
G Assemblies

Drivers
2l senices
Package Definition

éﬂ Install Parameters

L)
5. Organization
LT

ﬁ; Builds

Project Summary

L

In here, click on New and you can leave everything as default in the new window that appears.

Powered by AdvancedInstaller.com

Eo Advanced Techniques in MSI Packaging

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Active Setup Command et

General

ID:

[ProductCode]

Display Mame:

Stub Path: maiexec ffou [ProductCode] fgb

Version: [Productyersion]

Locale:

Is Installed:

Condition

We have discussed more in-depth about the Active Setup mechanism in our first book, but if we
check what the above settings mean, we end up with the following:

D

ID: The ID which will appear in the Active Setup registry. This can be basically anything
because the Active Setup mechanism will check if on the current logged in user the
registry for Active Setup which is present under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active Setup is also present under
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Active Setup

Display Name: The purpose of the "DisplayName" value is to provide a meaningful name
or description for the Active Setup component so that users can understand its purpose
or functionality. It helps users identify the component when they view it in registry
editors or other software that displays registry information.

Stub Path: By setting the "StubPath" value, software developers can define the action or
task that should be executed when the Active Setup component runs. It allows them to
perform various installation or configuration operations during user logon, ensuring that
specific tasks are completed for each user. In our case we are triggering a repair of the
installed MSI with /fou.

Locale: The purpose of the "Locale" value is to define the language or regional settings
that should be used when executing the Active Setup component. It allows software
developers to provide localized versions of their installation or configuration tasks,
ensuring that the appropriate language or regional settings are applied for each user.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 75

https://www.advancedinstaller.com/application-packaging-training/msi/ebook/active-setup.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e IsInstalled: Software developers can use the "IsInstalled" registry key to check the
installation status of their Active Setup component. During the Active Setup process, the
component can set or update the "IsInstalled" value based on the successful completion
of its installation or configuration tasks. This allows subsequent logons by the user to
skip the installation process if the component is already installed.

So the active setup is doing exactly what we need, and that is to trigger a repair of the MSI when
the user logs in again.

And that is it, in both cases after the application is installed we have ensured that even after the
deletion of the MSI the users will still be able to receive the user data files in their profile. The
difference between the two scenarios are the following:

e If we are using the advertised shortcuts route, every time a HKCU registry is missing the
self-healing will start again. Also, the self-healing will start immediately after the user
starts any shortcuts, meaning that after the application gets installed the user will also
have the configuration once he starts the application

e If we are using the active setup route, this will only be executed once. Another downside
of this method is that the user must log off/log on again in order for the Active Setup
mechanism to start running and find the differences

Registry classes

Classes in the Windows Registry enable the organization and management of file type
associations and other related settings. Each file type association in the registry is represented
by a class that defines the association's properties and behaviors. Classes can be used to define
other system objects such as ActiveX controls, fonts, and COM objects in addition to file type
associations.

The registry's classes are organized in a hierarchical structure that starts with the root key,
HKEY CLASSES ROOT. Subkeys in this key represent file extensions, COM objects, and other
objects that can be associated with classes. Each HKEY CLASSES ROOT subkey represents a
specific class and contains values that define the class's properties and behaviors.

The class defines which application should be used to open files with a specific extension, as
well as any command-line arguments or other settings required to open and handle the file

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 76

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

properly. Other behaviors defined by the class include whether the application should open the
file in a new window or in an existing instance of the application.

Classes can be modified manually with the Registry Editor or other registry editing tools, or
automatically with tools like Group Policy. IT professionals may need to modify classes to
ensure that files are correctly opened and handled on their systems, or to prevent specific
applications from opening specific file types.

Before we have a look at how to manipulate the file extensions that VLC offers support for, let us
first understand what types of registry can be found on machines:

COM

Interfaces

Type Libraries

File Type Associations (FTA)

COM+

“COM” Registry

Microsoft's COM (Component Object Model) is a binary interface standard that allows software
components to communicate with one another. Regardless of the programming language used
to create the components, COM provides a standard way for applications to interact with one
another and with the operating system.

COM is represented in the Windows Registry by a set of registry keys and values that define the
properties and behaviors of COM components. These keys and values are used to register COM
components on the system, specify which interfaces a component supports, and provide other
configuration information to the operating system and applications.

COM components are represented in the Windows Registry by a series of keys and values that
define the component's properties and behaviors. Among these keys and values are the
following:

e CLSID: This key represents the component and includes subkeys for each version that is
installed on the system. Each subkey contains values that specify the component's

name, description, and other properties.

e InprocServer32: This key denotes the dynamic link library (DLL) that implements the
component and contains values that specify the DLLs path and other properties.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 77

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Interface: This key represents the interfaces exposed by the component and includes
subkeys for each. Each subkey contains values that specify the interface's name, GUID,
and other properties.

C++, Visual Basic, and.NET are just a few of the programming languages that can be used to
create COM components. A COM component, once created, can be used by any application that
supports COM, including those written in different programming languages. As a result, COM is
a powerful and adaptable technology for developing software components and applications.

One of the key benefits of COM is the ability to enable late binding, which allows applications to
call methods on a component without having to understand how the component works. This is
accomplished by utilizing interfaces, which provide a standardized means for components to
expose their functionality to other components. When an application calls a method on an
interface, regardless of the programming language used to create the component, the COM
runtime resolves the call to the correct implementation of the method.

Another benefit of COM is its versioning support, which allows components to be updated or
replaced without breaking existing code that relies on them. This is accomplished by utilizing
interfaces and versioning information stored in the Windows Registry. Developers can modify
the implementation of a component without affecting its interface by defining interfaces for
components and tracking their versions, ensuring that existing code continues to work as
expected.

The following is an example of a registry entry for a COM component:

HKEY_CLASSES_ROOT\CLSID\{9BA05972-F6A8-11CF-A442-00A0C90A8F39}
(Default) = "Microsoft Windows Media Player"
InprocServer32 = "%ProgramFiles%\Windows Media Player\wmp.dlI"

The above registry entry registers the Windows Media Player COM component on the system,
specifying the default name of the component and the location of its DLL file.

Interfaces

Interfaces are a fundamental component of COM and are used to define a component's
methods and properties that are accessible to other components. Interfaces are represented in
the registry by a series of keys and values that define the interface's properties and behaviors,
including the methods and properties that are available to other components.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 78

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Interfaces are represented in the Windows Registry by a series of keys and values that define
the interface's properties and behaviors. Among these keys and values are the following:

e Interface: This key represents the interface and contains values that specify the
interface's name, GUID, and other properties.

e Methods: This key represents the interface's exposed methods and contains subkeys for
each method. Each subkey contains values that specify the method's name, ID, and other
properties.

e Properties: This key represents the interface's exposed properties and contains subkeys
for each property. Each subkey contains values that specify the property's name, ID, and
other properties.

COM components use interfaces to define their functionality and provide a standardized way for
other components to interact with them. Interfaces are language-agnostic, which means that
components written in different programming languages can communicate with one another via
interfaces.

In COM, interfaces are also used to provide a mechanism for component versioning. Developers
can change the implementation of a component without affecting its interface by defining
interfaces for components. This means that components can be updated or replaced without
interfering with existing code that relies on them.

Assume you have a COM component that provides email sending functionality. The component
may define an IEmailSender interface that exposes methods for sending email messages. Other
components or applications can use this interface to interact with the email-sending component
without having to understand its internal workings.

Here is an example of a registry entry for a COM interface:

HKEY_CLASSES_ROOT\Interface\{00020400-0000-0000-C000-000000000046}
(Default) = "IDispatch”

The IDispatch interface, defined in the preceding registry entry, is used to provide automation
support for COM components. It specifies the interface's default name and GUID.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 79

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Type Libraries

Type libraries, which are used to define the data types and interfaces that a component
supports, are another important aspect of COM. Type libraries are represented in the registry by
a series of keys and values that define the properties and behaviors of the type library, including
the interfaces and data types that are supported.

Type libraries are represented in the Windows Registry by a series of keys and values that define
the type library's properties and behaviors. Among these keys and values are the following:

e Typelib: This key represents the type library and includes subkeys for each version that
is installed on the system. Each subkey contains values that specify the type library's
name, description, and other properties.

e Version: This key denotes a particular version of the type library and includes subkeys
for each interface defined in the type library. Each subkey contains values that specify
the interface's name, GUID, and other properties.

e Interface: This key in the type library represents a specific interface and contains
subkeys for each method and property defined in the interface. Each subkey contains
values that specify the method or property's name, ID, and other properties.

Type libraries are commonly used by COM-compliant development tools and programming
languages such as Microsoft Visual Basic, Microsoft Visual C++, and Microsoft. NET Framework.
These tools use the type library information to generate code that can be used to call methods
and properties on the COM component.

For example, if you have a COM component that exposes an interface for retrieving data from a
database, you could generate code that calls the interface's methods and properties using a
development tool like Visual Basic. The development tool would generate code based on the
information in the type library, ensuring that the correct data types and method signatures are
used.

Here is an example of a registry entry for a COM type library:

HKEY_CLASSES_ROOT\TypeLib\{1F2DOE65-8DFE-4BAF-AQ7E-4A4D4C4B1E9D}\1.0
(Default) = "Microsoft Excel 2010 Object Library"

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 80

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The registry entry above defines the Microsoft Excel 2010 Object Library type library, which
contains Excel's interfaces and data types. It specifies the type library's default name and GUID.

File Type Associations

In the Windows Registry, file type associations represent the link between a file extension and
the application that is used to open that file. When a user double-clicks on a file with a specific
extension, the operating system searches the registry for the file type association to determine
which application should be launched to open the file.

Each registry file type association contains several pieces of information, including the file
extension, the application associated with the extension, and the command-line arguments
passed to the application when the file is opened. This data is saved in a specific location in the
registry, where it can be accessed and modified using tools like the Registry Editor or
PowerShell.

Users or applications can change file type associations, and changes to these associations can
affect how files are opened and handled on a given system. If an application that claims to
handle a specific file type is installed, it may modify the file type association in the registry to
ensure that it is launched when a file with that extension is opened. Basically, a file type
association is a mapping between a file extension, such as .txt or .docx, and the application that
should be used to open files with that extension, such as Notepad or Microsoft Word.

File type associations are represented in the Windows Registry by a series of keys and values
that define the properties and behaviors of the association. Among these keys and values are
the following:

e File type: This key represents the file type and includes subkeys for each file extension
associated with it. Each subkey contains values that specify the file type's name,
description, and other properties.

e Shell: This key represents the applications associated with the file type and includes
subkeys for each. Each subkey contains values that specify the application's name, path,
and other properties.

e Defaultlicon: This key contains values that specify the path to the icon file and represents
the icon that is displayed for files with the associated file type.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 81

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

If we take the .txt file extension as an example, HKEY_CLASSES_ROOT\.txt key represents the
file extension ".txt" and contains values that define the properties and behaviors of the
associated file type. Here are some examples of values that could be included:

e (Default): The name of the file type associated with the extension is specified by this
value. The value in this case could be "txtfile."

e Content Type: This value specifies the file type's MIME type. The value for a text file
could be "text/plain."

e PerceivedType: This value specifies the file type's perceived type. The value for a text file
could be "text."

e Shell: This key represents the applications associated with the file type and includes
subkeys for each. For example, there could be a "edit" subkey that specifies the
application to be used to edit text files.

e Defaultlcon: This key represents the icon that is displayed for files with the associated
file type and contains values that specify the path to the icon file.

B Registry Editor = a X

File Edit View Favorites Help

Y L L LV

R N

Computer\HKEY _CLASSES ROOT\ bt

psr Name Type Data
rec 2] (Default) REG_SZ tfilelegacy
trg ab] Content Type REG_SZ text/plain
::(ab) PerceivedType REG_SZ text
tscdf |
tscproj
tsp
tsv
dex
fad
Ha
fads
A
s
Hve
vlink
fati
twig
et
OpenWithProgids
PersistentHandler
shellex
udf
.UDL
.udt
Juitest
{URL
Juser

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 82

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

COM+

COM+ is a component services technology that extends the functionality of COM by providing
additional features such as transactions, security, and queuing.

In the registry, COM+ is represented by a series of keys and values that define the properties and
behaviors of the COM+ components and services, including the configuration information that is
used by the operating system and applications.

COM+ has several features that make it useful for developing distributed applications, including:

e Transaction support: COM+ includes transactional support, allowing developers to
create applications that can perform multiple actions in a single transaction. This is
critical in distributed applications to ensure data consistency and reliability.

e Object pooling:Object pooling is a feature of COM+ that allows developers to reuse
object instances across multiple client requests. This can boost application
performance while lowering the overhead associated with creating and destroying object
instances.

e Automatic activation: COM+ supports automatic activation, allowing objects to be
created and destroyed as needed. This can improve application performance while
reducing the overhead associated with object instance management.

e Just-in-time activation: Just-in-time activation in COM+ allows objects to be created and
initialized only when they are required. This can boost application performance by
lowering the overhead associated with creating and initializing objects that may never be
used.

COM+ components are represented in the Windows Registry by a series of keys and values that
define the component's properties and behaviors. Among these keys and values are the
following:

e CLSID: This key represents the component and includes subkeys for each version that is
installed on the system. Each subkey contains values that specify the component's
name, description, and other properties.

e InprocServer32: This key denotes the dynamic link library (DLL) that implements the
component and contains values that specify the DLLs path and other properties.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 83

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Interface: This key represents the interfaces exposed by the component and includes
subkeys for each. Each subkey contains values that specify the interface's name, GUID,
and other properties.

COM+ also includes tools and utilities for managing and configuring distributed applications,
such as the Component Services MMC snap-in, which allows developers to configure

transaction settings, object pooling, and other COM+ component features.

Here is an example of a registry entry for a COM+ component:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppID\{00000000-0000-0000-0000-00000000
0000}
(Default) = "DefaultAppID"

Overall, the Windows Registry plays a critical role in managing and configuring COM
components and related technologies such as interfaces, type libraries, and COM+.

By providing a standardized way to register and configure these components, the registry
ensures that they are properly integrated into the system and available for use by applications
and other components. IT professionals who work with COM and related technologies must
have a thorough understanding of the registry and its structure in order to effectively manage
and configure these components on their systems.

Let's take a look at how these classes communicate and interact with one another:

e COM (Component Object Model): In Windows, COM is the foundational technology for
component-based development. It defines how software components communicate and
interact with one another. COM allows components to be used across multiple
applications and systems by facilitating inter-process communication. It specifies a set
of rules and protocols that govern the instantiation, access, and management of
components.

e Interfaces: Interfaces define the relationship between a component and the clients who
use it. They define a set of methods, properties, and events that other components can
access and use. Interfaces define how components interact with one another in a
consistent and standardized manner. Components communicate in COM by invoking
methods defined in interfaces.

e Type Libraries: Type Libraries provide a structured and standardized representation of
interfaces, data types, and other components' elements. Type Libraries contain
information about the interfaces that a component supports, as well as their methods,

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 84

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

properties, and parameters. They facilitate component communication and
interoperability by providing a clear understanding of their capabilities and how they can
be used.

COM+ (Component Services): COM+ is a COM extension that adds features and
capabilities for developing enterprise-level applications. It provides transaction
management, object pooling, and distributed transactions among other services. COM+
components are intended to operate in a managed environment, enhancing reliability,
scalability, and security.

The following are the relationships between these classes:

Interfaces are the primary means of communication between components in COM.
Interfaces exposed by components define the methods and properties they provide.
Clients of a component use these interfaces to access the component's functionality.
Type Libraries allow you to define and document a component's interfaces and other
elements. They serve as a repository for information about the capabilities of the
component, making it easier for clients to understand and interact with it.

COM+ enhances COM's capabilities by providing additional services and features. COM+
components can communicate with other components via COM interfaces while
leveraging COM+'s enhanced features for advanced functionality such as transaction
management or object pooling.

Manipulating of registry classes with Advanced
Installer

Advanced Installer supports working with COM components extensively, including the ability to
define custom interfaces, type libraries, and classes. The Advanced Installer GUI can be used to
define and register these components.

One of the primary advantages of using Advanced Installer for COM component work is its
ability to generate registry entries and other configuration data automatically based on the
information defined in the installation package. This can greatly simplify the process of creating
and managing COM components, particularly in complex applications requiring multiple
components and interfaces.

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 85

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Advanced Installer offers two separate pages for the users to work with different types of
classes. When it comes to COM components, Interfaces, Type Libraries and COM+ components,
you can define this information directly into the GUI by navigating to the COM Page.

i COMTools Your Application - Your Application.aip (English US) - Advanced Installer 20.6" - o X }

O/ HE- ¥ P €
Project View Settings Wizards com (7]
= L < g
S 0 . x i
BB B B s
New MNew NewType Mew Import Delete Comvert Goto
Class Intefface Library COM+= COM-= Type Library Component ‘

New Import Actions
- COoM |
[o find |
COM, Interfces, COM=, Type Lbraries | Al
See Simple View F3 =] Tﬂfs&fjmputer | USER GUIDE ADVANCEDINSTALLER.COM |

‘(% Merge Modules

" Interfaces
" TypeLibraries

~ come EZ COM Overview
User Interface
\i‘/\ Themes You can register COM, Interfaces, Type Libraries, COM+, DCOM modules.
| D Dialogs E To add a new Class use the [New Class] toolbar button, the “New Class” tree context menu
| item or press the Ins key while the focus is on the " |, Interfaces, +, e Libraries”
Slideshow p he Ins key while the f he "COM, Interf; COM+, Type Lib
f— panel.
@ Translations
System Changes @ Use the [New Interface] toolbar button or the “New Interface” tree context menu item.

Environment
G—) Scheduled Tasks
w Windows Firewall

*

o L\"E To add a new COM+ use the [New COM+] toolbar button, the “New COM+" tree context
‘6 Users and Groups

menu item or press the * key while the focus is on the "COM, Interfaces, COM+, Type
Eg COM Libraries” panel.
Server

% Toadd a new Type Library use the [New Type Library] toolbar button, the “New Type

Library” tree context menu item or press the + key while the facus is on the "COM, Interfaces,
COM+, Type Libraries” panel.

E To import an existing COM+ use the [Import COM+] toolbar button or the “Import COM+"
tree context menu item while the focus is on the "COM, Interfaces, COM+, Type Libraries”
panel.

¥ opec

=
& SOLDatabases For more detailed help, please press the F1 key.

Freimbmin Dl ine

Project Summary v

 Notifications |

When it comes to File Type Associations, Advanced Installer offers a separate GUI where you
can define these and this can be found in the Eile Associations Page.

5

Advanced Techniques in MSI Packaging
Powered by AdvancedInstaller.com 86

https://www.advancedinstaller.com/user-guide/com.html
https://www.advancedinstaller.com/user-guide/file-associations.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

D HB-X I File Assaciations Tools Vour Application - Your Application.aip (English US) - Advanced Installer 20.6* - o X

“ Project View Settings Wizards File Associations (2]

¥ DO E® B o X g

NewFile Mew New New New Default New Shell Context Delete Goto
| Assodiation Progld Bxtension Verb Program Menu Entry~ e Component
Wizard Hew Clipboard Actions

File Associations

0

ProgiDs, Extensions, Verbs, Default Programs and 5... || Extension Praperties
See Simple View 2z [Target Computer

v [IManufacturer].[[ProductName].txct G |

< Mot enera
% Upgrades &0pen Command: APPDIR \HelloWorld.exe
@ Licensing MIME Type:
A Multiple Instances
£ Feature: MainFeature e
| Resources

E Files and Folders [Place extension in a separate feature
F Shartcuts nstallation Behavior

(3 Ties Tnstalled by defauit

Notinstalled by default
| b JavaProducts
= Install based on custom condition:

3
ILH Registry

D} File Associalions

@
e Assemblies User Interface

- .
=, Drivers Show in FileAssociationsDlg dialog (requires "Place extension in a separate feature™)

oy Senices

Package Definition

ﬁ Install Parameters

=
= Organization
-TT]

L,
Project Summary

) Notifications

image-id ai-file-associations-page.png

image-title

image-alt-text

COM Page

Advanced Installer includes a number of useful tools for working with COM components, such
as the ability to create new classes, interfaces, and type libraries. These tools are accessible via
the Advanced Installer interface's "COM, Interfaces, COM+, Type Libraries" panel, which allows
developers and system administrators to easily create, edit, and manage COM components for
use in their applications.

Simply click the corresponding toolbar button, tree context menu item, or keyboard shortcut to
add a new class, interface, or type library. To add a new class, for example, while the "COM,
Interfaces, COM+, Type Libraries" panel is focused, click the "New Class" button or press the
Insert key. Similarly, use the "New Interface" or "New Type Library" toolbar buttons to add a new
interface or type library.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 87

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

COMTools Yeur Application - Your Application.aip (English US) - Advanced Installer 20.6™ - a x
Wizards oM (2]

Go to
ace Library COM= COM= Type Library Component

Import Actions

Advanced Installer includes tools for editing and deleting existing components in addition to
adding new ones. Use the "Rename" tree context menu item or press the F2 key while the
element is selected to rename it. Use the "Delete" toolbar button, the "Delete" tree context menu
item, or the Delete key while the element is selected to delete it.

Mew Class

Mew [nterface
Mew Type Library
Mew COM-+

B LB L,

Import COM=+

#s Goto Component

Rename

75 Delete

Advanced Installer also includes tools for importing COM+ components and converting type
libraries for more advanced tasks. Use the "Import COM+" toolbar button or context menu item
to import a COM+ component. Use the "Convert Type Library" toolbar button or tree context
menu item to convert a type library. When converting a type library, the COM registration
registries contained within the file are extracted and silently imported into the Registry page,
bypassing the TypeLib table.

COM Properties

Once a COM component has been added to the project, the properties tab view allows you to
specify the settings of that particular COM.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 88

https://www.advancedinstaller.com/user-guide/COM-settings.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

9 HeE- PP € >@B+ COMTools Your Application - Your Application.aip (English US) - Advanced Installer 20,6 - o X
Project View Settings Wizards com (7]
=] - 37 "4
s E-\—o] B Bo Bo x =y
New New NewType New Import Delete Convel Goto
Class Interface Library COM-+ COM= Type Library Component
New Impart Actions
com
0
;M, Interfaces, COM-=, Type Libraries [CTar e —
See Simple View F Target Computer
v COM
- [{90000000-0000-0000-0000-00 General
User Interface v 20 Interfaces
- @ {00000DDO-0000-DOBG-D00G-00 Fle: APPDIR Helloworld.exe]
\, Themss v 77 Type Libraries
& (000ODODD-0000-0000-0000-00 Context: LocalServer32 &
= Dialogs com
- Threading model: Both -
Slideshaw
- Proglc: <none> v
2| Translati
E‘ ransiations VerlndepProgld:
System Changes Bescriptions:
Emvironment
Version:
(D) scheduled Tasks
Typetib I0:
(D Windows Firewall
bal] Displa
&)} Users and Groups play ®
B3 cou feon:
Server
i1 Options ®
ﬁ oDBC File type mask:
% SOL Databases DefaultirProctander: | 1 ~]
Custom Behavior Argument:
O searcn Feature: MairFeature
[V=] Properties (O Relative path
7} Custom Adtions .
F Location @
D Table Editor HKEY_CLASSES_ROOTICLSID
Project Summary
@ Notifications

The interface in the view is simple and straightforward, allowing IT professionals to easily
configure the settings for their installation package. When registering COM files with Advanced
Installer, you have several options:

D

General Settings: The "General" tab displays some general information about the COM
file that is being registered. You can specify the file to be registered, the server context,
and the threading model here. You can also give the COM file a description and a version
number.

Progld and VerindepProgld: You can specify the Program IDs associated with the Class
ID using the "Progld" and "VerindepProgld" options. Advanced Installer's File
Associations page is where program IDs are defined. You can also specify a
version-independent Program ID in the Installer Project's File Associations or Registry

page.

TypeLib Id: You can enter the ID of the TypeLibrary that describes the COM here. This
option is especially useful when dealing with a large number of COM files.

Display and Options: The "Display" and "Options" tabs allow you to specify various
settings related to the appearance and behavior of the COM file. You can select an icon

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 89

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

that will be associated with the CLSID, specify the file type mask, and select the default
in-process handler for the server context.

Argument and Feature: The "Argument" and "Feature" options are related to the CLSID
keys LocalServer or LocalServer32. The "Argument” option allows you to register a text
as the server's argument, which is used by COM to invoke the server. The "Feature"
option lets you choose which feature provides the COM server.

Relative Path and Location: Finally, you can specify whether the register path is relative
or absolute, as well as the registry location where the COM is registered, using the
"Relative Path" and "Location" options. The registry location for COMs defined through
the MSI Class table is read-only.

COM ActiveX Properties

If the COM has any ActiveX settings, you can easily configure them in the ActiveX Properties

Tab.

O HE-
Project

Hew MNew
New
Pe)
See Simple View
o
User Interface
X5 Themes
= pialogs
Slideshow
[As] Transiations
System Changes
Environment
(O scneduied Tasks
) windows Firewal

belel
&4 Users and Groups

ES cou

Server

IS

w7 ooec

5 saLDatabases
Custom Behavior
O searcn

[V=] Properties
[custom Actions

[=] Tatle Editor

Project Summary

New Type New
Class Interface Library COM=

e

Settings

i X

Import Delete Convert

COM~
Import

Wizards

COoMTools Your Application - Your Application.aip (English US) - Advan:

com

@

Goto
brary Component

Actions

CoOM

COM, Interfaces, COM-=, Type Libraries
[Target Computer

~

v

oM
+[;] (00DOO000-0000-0000-0000-00
Interfaces

@ {00D00D00-D0DD-000C-0000-00
Type Libraries

5 {00000000-0000-COCC-000-00
COM~+

- - ol
{E Cess T ActiveX 43 Appld

Properties
() Active X Contral

Toolbox

Bitmap Path:

ced Installer 20.6%

(OProgrammable

Oinsertable

Resource ID:

Misc Status (DvAspects)
() Defauilt:

() Content (1):

(O Thumbnail (2):

Enable Full Page

Extensions:

[J1con (4):

O Docprint (8):

Implemented Categories

GUID Description

O Notifications

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

90

https://www.advancedinstaller.com/user-guide/activex-settings.html
https://www.advancedinstaller.com/user-guide/activex-settings.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

ActiveX is a subset of COM that is designed specifically for use in web browsers, whereas COM
is a more general-purpose technology used to create software components that can be used by
any application.

ActiveX controls are essentially a type of COM component that is specifically designed to work
within a web browser. Typically, these controls are used to add functionality to a website or web
application, such as displaying multimedia content or interacting with user input. They are built
with the same technologies and techniques as other COM components, but with some
web-specific features and restrictions.

When looking over the ActiveX view, you have the following options:

e ActiveX Controls: ActiveX controls are a type of COM component that can be used to
add interactive features to web pages or desktop applications. When registering an
ActiveX control, it is important to mark it as such in the properties.

e Programmable COMs: Programmable COMs are COM components that can be used in
programming languages such as Visual Basic and C++. Registering a programmable
COM requires specifying it as such in the properties.

e Insertable Objects: Insertable objects are a type of COM component that can be inserted
into other applications, such as a Word document. When registering an insertable object,
it is important to indicate that objects of this class should appear in the Insert Object
dialog box list box when used by COM container applications.

Additional Properties: Aside from these main properties, there are several other properties that
can be defined when registering a COM. These include:

e Toolbox: This specifies the 16x16 bitmap to use for the face of a toolbar or toolbox
button.

e Misc Status: This property specifies how to create and display an object, the desired
data or view aspect of the object when drawing or getting data.

e Extensions: This property is used to register the control as the viewer for specified
extensions.

e Implemented Categories: This property is used to specify the categories this COM
implements.

To define new Implemented Categories, you can use the "New" button, the "Add" combobox, or
the "Add" context menu. There are also predefined implemented categories, such as

"Implemented in .NET", "Safe for scripting", and "Safe for initializing".

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 91

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

DCOM Properties

If you wish to configure and register DCOM servers, you can easily input a GUID to transform it
into a Distributed COM. This can be done in the AppID Tab.

8-

[AN =]
Sl o
B
!

New
Kl

See Simple View
User Interface

\ Themes
= piatogs

2] sideshaw
*5| Translations

PP ¢ > @< COMTosls Your Application - Your Application.aip (English US) - Advanced Installer 20,6

View Settings Wizards com

B e B A8 X &

ew ew NewType New Import Delete Conve Goto
Class Interface Library COM+ COM= Type Library Companent

Impart Actions
CoOM

COM, Interfaces, COM+, Type Libraries
- Computer
M
{0DO0000D-0000-000-0DD0-0000O000000
afaces
{00000000-0000-5000-0000-000000000000
e Libraries
{00O000D-00DD-0000-0DDO-DDOOOO00000
M«

{2 Cass 13 Activex e Appld

General
Please input a GUID to make this a Distributed COM,

Appld: {00000000-0000-0000-0000-000000000000}

Properties

Remote server name:

Local service:

System Changes
Service parameters:

Emvironment

DLL surrogate
(D) scheduled Tasks

[
(D Windows Firewall

&1 users ana groups

B3 cou

Server
Is
& oosc

55 saLDatabases

) Activate at storage

(D Run as interactive user

Custom Behavior
O searcn
,
[v=| Properies
[Custom Actions

[Tavle Editer

Project Summary

) Notifications

DCOM is a Microsoft technology that allows software components to communicate with one
another directly over a network. It is a Component Object Model (COM) extension that provides
the infrastructure for developing distributed applications. DCOM enables remote access to
components over a network and allows developers to create applications that are distributed
across multiple machines.

DCOM follows a client-server model, in which the client sends a request to the server, which
processes the request and returns a response to the client. The client and server can
communicate using a variety of protocols, including TCP/IP, UDP, HTTP, and HTTPS.

DCOM is commonly used in enterprise settings where applications must be distributed across
multiple servers and workstations. It enables developers to create distributed applications that
can be easily scaled to meet business requirements. However, installing and configuring DCOM
can be difficult, requiring a thorough understanding of the underlying network infrastructure.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 92

https://www.advancedinstaller.com/user-guide/appid-settings.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The Appld value can be specified in the General section of the Appld Properties tab. This value
is written to the CLSID and generates the Appld GUID key in HKCR\Appld.

The Appld Properties tab's Properties section contains several fields that allow you to configure
the DCOM server. The Remote Server Name field is a Formatted Type field that will be written
under HKCR\AppID{AppID}. The Local Service field specifies the local service that will be stored
in the HKCR\AppID{AppID} field. The Service Parameters field specifies which service
parameters will be stored under HKCR\AppID{AppID}. The DIl Surrogate field specifies the Dl
surrogate that will be stored in the HKCR\AppID{AppID} folder, and this field is usually left blank.

The Active At Storage checkbox is used to enable the "ActivateAtStorage"="Y" value, which is
stored in HKCR\AppID{AppID}. The Run As Interactive User checkbox allows you to tell the
DCOM server to run as an interactive user. This value will be written as "RunAs"="Interactive
User" under HKCR\AppID{AppID}.

Interface Properties

DI HE- PP € 3@ COMTools Your Application - Your Application.aip (English US) - Advanced Installer 20,6 - o X

“ Project View Settings Wizards com 2]
TEL LI

New Mew NewType New Import Delete Conve Goto
Class Interface Library COM= COM= Type Library Companent

New Impart Adtions
com
Kel
COM, Interfaces, COM-=, Type Libraries || Interface Properties

See Simple View F [Target Computer
v CoM

- +[7] (00000000-0000-0000-0000-00| Interface
User Interface ~ T Interfaces
€ {00DDDD00-D00D-000C-0000-00
~ T Type Libraries Number of methods 2
5 {00000000-0000-COCC-000-00
=] Dialogs

COM- Base Interface: Icontrols
m Slideshow
[Ag] Transiations
System Changes

Emvironment

@ Scheduled Tasks Type Library ®

:
@ windows Firewall

Version:

Name: InterfaceName

\ Themes

Proxy Stub @
16-bit Stub CLSID:

32-bit Stub CLSID:

o]

q] Users and Groups
E'og com Location ®
Server Registry path: HKEY_CLASSES_ROOT\Interface v

Is

& oosc

& saLDatabases
Custom Behavior

O searcn

’

[v=| Properies
[Custom Actions

[Tavle Editer

Project Summary

Ready O Notifications

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 93

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Advanced Installer has a dedicated view where you can specify the settings needed to create a
new COM Interface. This view provides a comprehensive set of properties for customizing the
interface and its components which includes the following fields:

e Name: This field allows you to specify the name of the interface. Choose a descriptive
name that reflects the purpose and functionality of the interface.

e Number of methods: Here, you can specify the number of methods declared in the
interface. This information helps in accurately defining the interface's behavior and
functionality.

e Base Interface: Specify the base interface that the current interface extends or inherits
from. This is useful when creating derived interfaces that build upon existing interfaces.

The Proxy Stub Properties section contains the following fields:

e Proxy Stub: This field allows you to provide marshaling support for your interface.
Marshaling is a process that facilitates communication between different processes or
systems by converting data between different formats or representations.

e 16-bit Stub CLSID: Specify the CLSID (Class ID) of the 16-bit proxy/stub DLL associated
with the interface. This DLL handles the marshaling process for the interface in 16-bit
environments.

e 32-bit Stub CLSID: Similarly, specify the CLSID of the 32-bit proxy/stub DLL associated
with the interface. This DLL is responsible for marshaling the interface in 32-bit
environments.

The Type Library Properties section includes the following fields:

e |D: Specify the ID of the type library associated with the interface. The type library
contains information about the interface's structure, methods, properties, and other
relevant details.

e Version: Define the version of the type library. This helps in managing compatibility and
versioning of the interface.

The Location section specifies the registry path where the COM Interface is registered. This
path indicates the location in the Windows Registry where the necessary information about the
interface is stored.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 94

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

By configuring these properties in Advanced Installer, you can effectively define and customize
COM Interfaces for your applications. These interfaces facilitate communication and
interoperability between software components, enabling seamless integration and interaction

within your applications.

Proper configuration of COM Interfaces ensures consistency, compatibility, and efficient
communication between different software components. Advanced Installer simplifies the
process, providing a user-friendly interface for specifying the required settings and ensuring a

smooth integration of COM Interfaces into your applications.

Type Libraries

O HE- P ¢ 5=
“ Froject View Settings Wizards com
B ED m= BS M5 X of oF

Mew MNew NewType MNew Import Delete Convert Goto
Class Interface Library COM= COM-= Type Library Component

New Import Actions
coM
0
COM, Interfaces, COM=, Type Libraries
See Simple View z [Target Computer
v 70 coM
- +{Z] {000D0O0O-0000-00DD-DDOO-00
User Interface v T Interfaces
© (00DDOODD-D00-D000-0000-00
X5 Themes

77 Type Libraries
& (00000000-0000-0000-0000-00
=] pialogs

COM+
Slideshow
E‘ Translations
System Changes

Environment

() sensauieaTasks

) windows Firewa

[{3 Users and Groups

EJ cou

Server

IS

& ooec

& soLDatavases
Custom Behavior
O searen

[V=| Properties
& custom actions

[Table Editor

Project Summary

Ready

COMTogls Your Application - Your Application.aip (English US) - Advanced Installer 20,6 - o X

Type Library Properties

General
Fie: APPDIR\New Text Document.olb
Language: Language Neutral b
Version 10
Desaription: Microsoft WSMAN Automation V1.0 Library
Details
Directary: APPDIR 0 | Reset
Feature: MairFeature
Cost: 0
Location @

HKEY_LOCAL_MACHINE \Software \Classes\TypeLib

@ Netifications

The Type Library Properties view in Advanced Installer allows you to specify the information that

will be stored in the registry during the Type Library's registration process. This allows for the

Type Library to be seamlessly integrated and accessible within your applications.

The General section includes the following properties:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

95

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e File: This field displays the file that contains the Type Library. You can use the [...]
button to browse and select a different file if needed.

e Language: Specify the language of the Type Library. You can select the appropriate
language from the drop-down list provided.

e Version: Define the version of the Type Library. The version follows the format of "major
version dot minor version," allowing you to specify the specific version of the Type
Library.

e Description: Provide a description for the Type Library. This description helps to provide
additional information about the Type Library's purpose and functionality.

The Details section includes the following properties:

e Directory: Specify the directory that contains the Help file for the Type Library. You can
use the [...] and [Reset] buttons to navigate and select the appropriate directory.

e Feature: Select the feature that must be installed in order for the Type Library to be
operational. This ensures that the necessary components are installed along with the
Type Library to support its functionality.

e Cost: Specify the cost associated with the Type Library properties in bytes. This helps to
manage the resource allocation and prioritize the installation of Type Libraries based on
their cost.

The Location section specifies the registry path where the Type Library is registered. This path
indicates the location in the Windows Registry where the Type Library's registration information
is stored.

Note that for Type Libraries defined through the MSI TypeLib table, this location is read-only
and determined by the installation package.

By configuring these properties in Advanced Installer, you can ensure that the Type Library is
registered correctly and can be accessed by your applications. The provided information, such
as file, language, version, and description, contributes to the seamless integration and
functionality of the Type Library.

Proper configuration of Type Library properties is essential for maintaining consistency,
compatibility, and accessibility of Type Libraries within your software solutions. With Advanced

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 96

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Installer's user-friendly interface, you can easily specify the required information and streamline
the registration process.

COM+

FIEER L
Project View Settings

g z0 T

B ED =B & X

Class Interface Library COM+ COM+
New Import

o
See Simple View -

User Interface
) Themes
=] ialogs
Slideshow
[As] Transiations
System Changes
Environment
() scneduied Tasks
) windows Firewal

ol
&4 Users and Groups

&? ComMm
Server

IS

w7 ooec

5 saLDatavases
Custom Behavior
O searcn

[V=] Properties
[custom Actions

[Tasle Editor

Project Summary

Ready

New New NewType New Import Delete Convert
Type Library Component

COMTogls Your Application - Your Application.aip (English US) - Advanced Installer 20,6

com

&

Goto

Ations

CoOM

COM, Interfaces, COM-=, Type Libraries
[Target Computer

- CoM
L] {00000000-0000-0000-0000-00
v Interfaces

@ [£0000000-D000-COCE-000-00
~ 7 Type Libraries

i {00000000-0000-DD0D-0000-00
v 77 COMs

g gzip.di

COM- Properties

Files

gaip.dl

Export Flags

65

@ Notifications

The Advanced Installer COM+ Properties view provides a comprehensive set of options for
specifying the information required for registering a COM+ component. This view allows you to
define the files associated with the COM+ as well as the flags used during the MSI file creation

process.

The Files section enables you to select the files that make up the COM+ component.

It is important to note that all the files belonging to a specific COM+ component must be
placed within the same component in Advanced Installer. This ensures proper organization
and management of the COM+ files.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

97

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

To add files to the COM+ component, click the [Add] button and browse for the desired files.
Conversely, if you need to remove any files from the COM+ component, use the [Remove]
button. By managing the files within the same component, you ensure that all necessary
dependencies and resources are properly registered and packaged during the installation
process.

The Flags section allows you to specify the flags used when creating the MSI file for the COM+
component. Flags provide additional information and instructions to Windows Installer during
the installation process. These flags can control various aspects of the installation, such as
installation options, behavior, or special requirements.

When configuring the flags, it is important to understand the specific requirements and
functionality of the COM+ component. The flags can be set according to the specific needs and
characteristics of the component to ensure that it is installed and configured correctly.

By carefully configuring the files and flags in Advanced Installer's COM+ Properties view, you
can ensure that the COM+ component is properly registered and packaged within the MSl file.
This guarantees seamless integration and functioning of the COM+ component within your
application.

It's worth noting that Advanced Installer makes configuring COM+ properties easier by providing
an intuitive interface that walks you through the steps. This enables IT professionals to manage
COM+ components effectively and ensure their successful installation and operation.

File Associations Page

You can associate specific file extensions with applications in your package, allowing the
selected program to perform specific operations (verbs) on files with those extensions.
Advanced Installer includes a page dedicated to creating and managing file associations,
making it simple to define relationships between ProglIDs, extensions, and verbs.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 98

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O HAB-X PP o€ > M| File Associations Tools Your Application - New Project (English US) - Advanced Installer 20.7% - o X
Project View Settings Wizards File Assaciations (7]

% e =

NewFile Mew New ew New Default New Shell Context
Association Progld Extension Verb Program Menu Entry~ Compone
Wizard New Clipboard Actions

File Associations

0

ProgiDs, Extensions, Verbs, Default Programs and S.. ~
See Simple View F [Target Computer ADVANCEDINSTALLER.COM

~ [IManufacturer].[|PreductMame] bt

v e
Product Information &Open . . .
-) T File Associations Overview
< Product Details
@” Digttal Signature You can associate file extensions with applications from your package so the selected
@ Updater programs can perform certain operations (verbs) on the files whose names end in the
- specified extension.
& Uporades -
lf_h Before you can associate a file extension with an application you must add files to
Licensi . . .
@ eensing the project. Use the Files and Folders link from the left pane menu to do that.
,f.. Multiple Instances .
1%, To create a new file association by following step-by-step directions use the

Resources [New File Association Wizard] toolbar button.

[Files ana Folders =) o . .
L[] To associate an application with an extension use the [New Extension] toolbar

F Shortcuts button, the “New Extension” tree context menu item or press the Insert key while the
Eﬁ" Tiles focus is on the “Extensions and Verbs” panel

18 Java Products E To associate a verb with an extension select the extension, then use the [New Verb]
‘»rg Registy toolbar button, the “New Verb” tree context menu item or press the + key while the

focus is on the “Extensions and Verbs” panel.

[T File Associations

B

@ To create a default program use the [New Default Program] toolbar button, the
k=] Assemblies 4

“New Default Program” tree context menu item or press the - key.

Drivers
% To create a context menu use the [New Shell Context Menu] toolbar button or the

<p Senices “New Shell Context Menu * tree context menu item.

Package Definition . L . i . i
. « Select an extension or a verb by clicking on it and you will be able to set its attributes
ﬁ Install Parameters in the right-hand panel.
EET: Organization « Drag and drop verbs to change the extension they are associated to.

« Right-click on the tree items to access their context menu for more options v
Project Summary

Ready

In the left-side pane of the File Associations view, you'll find a tree with all the ProgIDs defined at
the top level. Each ProglID can have multiple associated extensions, with each extension
capable of defining multiple verbs.

Advanced Installer includes the New File Association Wizard, which allows you to quickly and
easily create a new file association. Simply click the [New File Association Wizard] toolbar
button and follow the on-screen instructions to set up the association.

You have several options for creating a new ProgID. While the "ProgID, Extensions, and Verbs"
panel is focused, use the [New ProgID] toolbar button, the "New ProgID" tree context menu item,
or press the * key. When you create a ProglD, you can associate it with an extension or a
Component Object Model (COM) in the COM page. It should be noted that unless a ProgID is
associated with an extension or a COM, it will not be created during installation.

A ProgID will not be created at install time unless it is associated with an extension or a COM.

Only one extension should be associated with each ProgID.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 99

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Use the [New Extension] toolbar button, the "New Extension" tree context menu item, or the
Insert key while the "ProgID, Extensions, and Verbs" panel is focused to create new extensions.
This action generates a ProgID as well as an extension with default properties. If you want to
add an extension to an existing ProgID, make sure to select it (or one of its children) before
clicking [New Extension].

Use the [New Verb] toolbar button, the "New Verb" tree context menu item, or the + key while the
"ProglID, Extensions, and Verbs" panel is focused to create new verbs. This action will generate a
verb with the selected extension's default properties.

To establish a new default program, utilize the [New Default Program] toolbar button, the "New
Default Program" tree context menu item, or press the - key while the "ProgID, Extensions, Verbs,
and Default Programs" panel is focused. This will create a default program with default
properties for the selected extension.

The Default Programs feature applies only when the package is installed on Windows Vista or
later. For lower systems, it's ignored.

The Default Programs feature does not apply on Windows 8 and newer operating systems.
Due to their design, these operating systems don't allow setting the default programs
programmatically.

Use the [New Shell Context Menu] toolbar button to create a new shell context menu, and then
select the type of context menu you want to create: Files Context Menu, Directory Context Menu,
Background Context Menu, or a subentry for the currently selected shell context menu.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 100

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Context Menu Properties

[Jwindows 11 Context Menu

& Sparse Package is required to configure this option. Advanced Installer will automatically generate and indude it into
your setup package. All Sparse Packages must be digitally signed.

Display
Mame: | [ProductMame] |
Icon: | |
General
Type: Background
Command: "«path_to_EXE=" "%%1"

Advanced Installer also offers the option to define Context Menus for Windows 11. A Sparse
Package is required to configure this option. It will be automatically generated and included into
your setup package.

Digital signature is mandatory for this option. All Sparse Packages have to be digitally signed,
thus the above Sparse Package will be signed with the digital signature configured in your
project.

Simply use the "Rename" tree context menu item or press the F2 key while the element in the
left-side panel is selected to rename ProgIDs, extensions, verbs, default programs, and context
menus.

Use the "Go To Component" tree context menu item or press the F8 key while an element from
the "ProgID, Extensions, and Verbs" panel is selected to locate the attached component for an
extension. This command brings up the Organization page, with the appropriate component
selected in the left tree control.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 101

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Advanced MSI Packaging
Techniques

Custom actions

The most popular scripting language for MSI custom actions is VBScript as this is also natively
supported and interpreted by the Windows Installer.

Microsoft's Visual Basic Scripting Edition (VBScript) is a lightweight scripting language. It was
designed primarily to automate administrative tasks, boost productivity, and enable scripting
capabilities in Windows environments.

VBScript is a procedural scripting language with syntax similar to Visual Basic. The Windows
Script Host (WSH), a component built into Windows operating systems, interprets and executes
it. VBScript files, which typically have the ".vbs" extension, can be run directly or through other
programs.

VBScript executes code line by line and stores scripts in plain text files. It does not require
explicit variable declarations and supports a wide range of data types such as strings, numbers,
booleans, arrays, and objects. Statements end with a newline or a colon, and comments are
added with apostrophes or the "Rem" keyword.

Some of VBScript's core features:

e Variables and Constants: VBScript uses variables and constants to store and manipulate
data. Variables can have values assigned to them and be changed throughout the script,
whereas constants have fixed values.

e Operators: VBScript includes a number of operators that allow data manipulation and
decision-making within scripts, including arithmetic, comparison, logical, concatenation,
and assignment operators.

e Control Structures: To control the flow of execution based on certain conditions,
VBScript provides control structures such as conditional statements (If-Then-Else, Select
Case) and loops (For-Next, Do-While, Do-Until).

e Functions and Procedures: VBScript allows you to create custom functions and
subroutines to encapsulate reusable code blocks. Functions can return values, whereas
subroutines execute code without returning a value.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 102

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

VBScript includes a number of built-in objects and libraries for interacting with the environment,
such as the FileSystemObject for file operations, the WScript object for script control and user
interaction, and ADODB objects for database connectivity.

In any scripting language, error handling is critical, and VBScript provides mechanisms for
structured error handling via the "On Error" statement. It enables developers to handle runtime
errors gracefully, log exceptions, and take appropriate actions.

Best Practices:

e Use explicit variable declarations to improve code readability and avoid unexpected
behavior.
Comment your code adequately to enhance maintainability and readability.
Implement error handling routines to gracefully handle runtime errors and provide
meaningful feedback.

e Modularize your code by using functions and subroutines to promote code reusability
and maintainability.

e Follow established coding conventions and style guidelines to ensure consistency and
ease of collaboration.

As you will see in the examples below, VBScript accepts a wide variety of commands. If you are
a beginner or want to remember some commands, | recommend you check out the SS64
documentation of VBScript.

Unlike VBScript, PowerShell has emerged as a robust and versatile scripting language for

modern IT environments. PowerShell combines the power of scripting with command-line
functionality, providing administrators and developers with a powerful toolset to automate
tasks, manage systems, and streamline workflows.

PowerShell is a task-based, object-oriented scripting language that runs on the .NET framework.
It includes a command-line interface (CLI) and a scripting environment, which allow users to run
commands interactively or write scripts for automation. PowerShell scripts are usually saved
with the ".ps1" file extension.

PowerShell scripts are made up of cmdlets, which are small commands that perform specific
tasks. These cmdlets can be combined and tailored to produce powerful scripts. PowerShell,
like VBScript, supports variables, operators, loops, conditional statements, functions, and error
handling. PowerShell's syntax, on the other hand, is based on a verb-noun naming convention for
cmdlets, making it more intuitive and readable.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 103

https://ss64.com/vb/
https://ss64.com/vb/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

PowerShell treats everything as an object, making it simple to manipulate and access system
resources like files, services, registry entries, and more. This object-oriented approach unifies
the management and interaction with various data sources, making PowerShell a versatile and
adaptable scripting language.

PowerShell's pipeline feature is one of its key strengths. The pipeline enables powerful data
manipulation and processing by allowing the output of one cmdlet to be directly used as input
for another. PowerShell also supports output formatting, filtering, sorting, and grouping, giving
users complete control over data presentation.

PowerShell has a large number of modules and cmdlets that extend its functionality. These
modules enable users to interact with a variety of technologies such as Active Directory, Azure,
SQL Server, SharePoint, Exchange, and others. Furthermore, PowerShell allows developers to
create custom modules, allowing them to encapsulate their code for reuse and distribution.

If we compare PowerShell with VBScript we can touch on a few points:

e Syntax and Readability: The syntax of PowerShell, which is based on natural language
commands, is often considered more readable and intuitive than the syntax of
VBScript, which is similar to Visual Basic. The verb-noun naming convention in
PowerShell makes it easier to understand the purpose of commands.

e Object-Oriented Approach: PowerShell syntax, which is based on natural language
commands, is often considered more readable and intuitive than VBScript syntax,
which is similar to Visual Basic. PowerShell's verb-noun naming convention makes it
easier to understand the purpose of commands.

e Extensive Module Support: PowerShell's vast module ecosystem gives it access to a
diverse set of technologies, enhancing its capabilities and allowing for seamless
integration with a variety of platforms and services. This level of extensive module
support is not available in VBScript.

¢ Pipeline and Output Processing: The powerful pipeline feature in PowerShell allows
for efficient data manipulation and processing. Because VBScript lacks this native
capability, developers must write additional code to achieve similar functionality.

e Integration with .NET: PowerShell makes use of the.NET framework, which provides
access to a wide range of system APIs and libraries. This integration enhances
PowerShell's capabilities and makes it suitable for modern IT environments.

With its rich feature set, object-oriented approach, and extensive module support, PowerShell
has transformed the world of scripting and automation. It is a versatile and powerful scripting

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 104

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

language for managing and automating complex IT tasks due to its intuitive syntax, pipeline
functionality, and integration with the.NET framework.

While VBScript was once a popular scripting language, PowerShell now provides enhanced
capabilities, improved readability, and a vast ecosystem of modules and cmdlets. Using
PowerShell allows administrators and developers to automate tasks, streamline workflows, and
realize the full potential of their IT environments.

Dehardcode within files

Often, throughout the repackaging process, it's common to come across files featuring
straightforward paths, such as: C:\Program Files.

Allowing users to modify the installation path of their application is a common practice.
However, this practice comes with one downside: the need to change the path written in those
particular files during the installation.

In this article, we'll see how we can replace hard coded paths or variables inside files using
custom actions.

How to Discover Hard-coded Files?

Before we actually replace the hard coded paths, we first need to find out which files contain
hard-coded paths. There are various ways to get this information, but the most straightforward
one is to use Notepad++.

For instance, let's imagine we have an application installed in C:\Program Files\MyApp. As a
general rule, when repackaging, we always search for the installation directory inside all of the
application files.

In this scenario, the installer sets the ProgramFilesFolder property to the full path of the
Program Files folder. So we don't need to search for the full C:\Program Files\MyApp string, only
for the part that we can use as a variable - in our case, the C:\Program Files\ string.

Keep in mind that “Program Files” is an internal property known by the MSI.

Other properties include AppDataFolder, CommonAppDataFolder, CommonFiles64Folder,
CommonFilesFolder, DesktopFolder, FontsFolder, LocalAppDataFolder, MyPicturesFolder,

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 105

https://learn.microsoft.com/en-us/windows/win32/msi/programfilesfolder
https://learn.microsoft.com/en-us/windows/win32/msi/appdatafolder
https://learn.microsoft.com/en-us/windows/win32/msi/commonappdatafolder
https://learn.microsoft.com/en-us/windows/win32/msi/commonfiles64folder
https://learn.microsoft.com/en-us/windows/win32/msi/commonfilesfolder
https://learn.microsoft.com/en-us/windows/win32/msi/desktopfolder
https://learn.microsoft.com/en-us/windows/win32/msi/fontsfolder
https://learn.microsoft.com/en-us/windows/win32/msi/localappdatafolder
https://learn.microsoft.com/en-us/windows/win32/msi/mypicturesfolder
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

PersonalFolder, PrimaryVolumePath, ProgramFiles64Folder, ProgramMenuFolder,
StartMenuFolder, System64Folder, SystemFolder, TempFolder, WindowsFolder and
WindowsVolume. By using one of these properties, we can de-hardcode part of the installation

directory as a best practice.

To see which files contain the C:\Program Files\path, follow these steps:
1. Open Notepad++ and go to Search > Find in Files.

=~

new 3 - Motepad++

File Edit Search View

e = BRGa&l | || ax|BEI=
B change log] B Notesx64 msix 1 Bnew 13 Hnew3 B I

Find in Files

Find Replace FindinFiles Findin Projects Mark

Encoding Language Settings Tools Macro Run Plugins

Window 7

Eind what :

Find Al

Replace with : |

Replace in Files

Filters : | ==

Close

Directory : ‘ C:\Users\ser\Desktop\MyApp

. [JFollow current doc.

[CJMatch whole word only
[Match case

Search Mode
© Normal
(O Extended (n, v, t, \0, ...

. matches newline

O Regular expression

8 In all sub-folders
[JIn hidden folders

8 Transparency
© On losing focus
O Always
1

Normal text file length: 0 lines: 1

Ln:1 Col:1 Pos:1 Windows (CR LF)

UTF-8

INS

2. In the Find What field, input the INSTALLDIR of your application, in our case:

C:\Program Files\.

3. In the Directory field, input the location of your captured files.

4. Then, click on Find All.

If there are any matches found, Notepad++ will show you at what file and line you can find the

string.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

D

106

https://learn.microsoft.com/en-us/windows/win32/msi/personalfolder
https://learn.microsoft.com/en-us/windows/win32/msi/primaryvolumepath
https://learn.microsoft.com/en-us/windows/win32/msi/programfiles64folder
https://learn.microsoft.com/en-us/windows/win32/msi/programmenufolder
https://learn.microsoft.com/en-us/windows/win32/msi/startmenufolder
https://learn.microsoft.com/en-us/windows/win32/msi/system64folder
https://learn.microsoft.com/en-us/windows/win32/msi/systemfolder
https://learn.microsoft.com/en-us/windows/win32/msi/tempfolder
https://learn.microsoft.com/en-us/windows/win32/msi/windowsfolder
https://learn.microsoft.com/en-us/windows/win32/msi/windowsfolder
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

L‘j{ new 3 - Notepad++

File Edit 5Search View Encoding Language Settings Tools Macro Run Plugins Window 7 + ¥ X
o B = olgl‘ D| |ﬁﬂi;ﬁ“§ g‘h'l.ﬁ-‘.‘i—' EFEE@E@E |E|]
M changelog WE Notes-x64 maix]na‘." 1E] [Hrew3 B 1

1

\Program Elles\ (3 hits in 3 files of 3 searched)
:\Program Files\" (2 hits in 2 files of 2 searched)

MNormal text file length: 0 lines: 1 Ln:1 Col:1 Pos:1 Windows (CR LF) UTF-8 INS

How Does Automatic INI De-hardcoding Work?
As you can see from above, Notepad++ found our location inside an INI file. However, working

with INI files becomes a straightforward process when using Advanced Installer. During the
repackaging process, the Advanced Installer imports all INI files into the project and
de-hardcodes them automatically.

Additionally, when you add a new INI file while editing your project, Advanced Installer easily
identifies potential variables and automatically de-hardcodes the file.

Want to see Advanced Installer in action? Check it out through our 30-day full featured free
trial and elevate your installation process today!

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 107

https://www.advancedinstaller.com/trial.html
https://www.advancedinstaller.com/trial.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

[\’ HE- % i-P €>@B< Files And Folders Tools Vour Application - New Project (English US) - Advanced Installer 20.2 —]

Project View Settings wizards Files, Folders and Shorteuts

o e T) el
Drivers L]

i Senices

Packaae Definition

Project Summary

INI File with 5 values, placed in: APPDIR\test.ini

el M __ Add Temporary Files ¥ Co = =
et DR v K B R S & & & o i
: B & B [Import Files ~ Hocut MainFeature
. Add Add) Delete Properties Hash Ignore Refrsh Goto MoveTo MoveTo Condition _ Howto Visible
BE - B Folder Files~ Add Dependencies Paste Files Attributes Component Component Feature files T Videos members~
wizard New Add Clipboard Options Adtions Feature
5 Files, Folders and Shortcuts Qusearch files
Folders I Name Size Type
. . - [Target Compute- e 1KB INIFile (Wind...
See Simple View 2 el £ N Fie -
8 Application
Froduct Details » 23 Program il | Sections Key Value Action Compon...
E} Digital Signature > Ffucgwemfm [4] test.ini Entries To Add
4 | ST name [PregramFilesFolder]MyApp Create orupd.. Productl...
@ Updater Desktop 38 database Rerme Widgets inc. Create orupd... . Broduct]
Common A
& Upgrades s B3 Start Menu
.y ~ T User Profile
fb Licensing Documg
8 Pictures
A Multiple Instances
ap MitP Favoritd
Resources Appliel
2 Local Af
E. Files and Folders Netwaork
Recent ||
A shorteuts o |
Send T
ﬂl Tiles i
Window|
(Wh Java Products Templates
= Administrat
uﬁ Registry -
b Operations
D-_ll File Associations S WWW Re
New Section. . New Entry..
r'iJ Assemblies

De-hardcoding Files Using VBScript Custom Actions
When it comes to other types of files, we must perform additional steps to de-hardcode the
locations we need. In this case, we'll use the MSI's custom actions capability.

For VBScript Custom Actions, you can use the following script:

'On Error Resume Next
'Option Explicit

Const ForReading = 1, ForWriting = 2, ForAppending = 8
Dim strFilePath, strToReplace, strNewValue, pathl, path?2
strArgs = Session.Property("CustomActionData")

Split (strArgs, ";", -1, 1)

arrArgs

pathl
path?

arrArgs (0)
arrArgs (1)

Function ReplaceInFile(strToReplace, strNewValue, strFilePath)

Dim objFSO, objFile, strText, re

Powered by Advancedinstaller.com

Eo Advanced Techniques in MSI Packaging

108

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Set objFSO = CreateObject ("Scripting.FileSystemObject")
if objFSO.FileExists (strFilePath) Then
Set objFile = 0bjFSO.OpenTextFile(strFilePath, ForReading,
True)
strText = objFile.ReadAll
objFile.Close
Set objFile = Nothing

strText = Replace(strText, strToReplace, strNewValue, 1, -1,
Set objFile = 0bjFSO.CreateTextFile(strFilePath, True)
objFile.Write strText
objFile.Close
Set objFile = Nothing
End If
Set objFSO = Nothing
End Function
strToReplace = "C:\Program Files\"

strNewValue = pathl
ReplaceInFile strToReplace, strNewValue, path2 & "hello.cfg"

The script is quite long, so let’s try to understand what it does.

Up to line 8, we are using Session.Property("CustomActionData"); this allows VBScript to catch
any arguments passed to it.

Check out our article and learn How to set an installer property using custom actions.

At line 9, the ";" separates the parameters, and path1 represents the first argument. The path2
represents the second argument that we pass.

Next, we can see the ReplacelnFile function, which takes the following arguments:
e strToReplace - the string we want to replace.
e strNewValue - the new value we want to add.
o strFilePath - the file path where we want to do the replacement.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 109

https://www.advancedinstaller.com/user-guide/set-windows-installer-property-custom-action.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The function opens the file mentioned in the strFilePath and parses all the text via
objFile.ReadAll.

Then, we use the Replace function to replace the string. We can write it in the file with
objFile.Write strText and close the file with objFile.Close. After that, we can dispose of the
object with Set objFile = Nothing.

The values for strToReplace and strNewValue are defined below the function. Lastly, we call the
function to perform the actions with ReplacelnFile strToReplace, strNewValue, path2 &
"hello.cfg".

Now that we have our script ready, let’s create the Custom Action in Advanced Installer and run
it. For this, follow the next steps:

1. Navigate to the Custom Actions Page.

2. Search for the Launch attached file custom action and add it to the sequence.

3. Select the VBScript that we created previously.

4. In the Action Data field, we need to add the proper variables. Remember, the first one
is the string we want to replace C:\Program Files\ with, and the second one is the
location where the hello.cfg file can be found. For this example, we created an additional
property called MYPROPERTY which only contains a string.

5. Since the action is set to Immediately as the Execution Time, we will place it after the
Finish Execution stage.

6. Build and install your package.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 110

https://ss64.com/vb/replace.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

D HEHS- IR R Custom Actions Taals My Application - My Application.aip (English US) - Advanced Installer 20.2 - o x
I o View Settings Wizards Custom Actions (2]
&y <> Co
Gk [2 Copy x
|5 N “l ¥, cut o
Mew Custom Attached Installed Show Standard Sequence Move . Delete How-to
{ File File Adtion Share Paste Videos
Wizard Launch Clipboard
Custom Actions
o
Add Custom Action | Existing Custom Actions Launch Attached File
See Simple View 2 o
[EA i
Launch attached fie @ & Properties
it 1y
’% Launch Conditions Launch installed fie Attached file: Ci\Users\ser\Desktopldehard. vbs
., Verge odules Launch fle from property File type: Visual basic script (*.vbs) -
! Launch EXE with working directory
Function:
User Interface Launch file
Action data: [MYPROPERTY]; [APPDIR]
1 package, but v p—
e o [igitally sign fie at buid tme
[oialogs
Installation Sequence —
Slideshow Execution Time ®
Show: ANl Instal Uninstall Maintenance © Immediately
5| Transiations Wizard Dialogs St
- izard Dialogs >tage Vihen the system is being modified (deferred)
System Changes @ Searches During instaliation rollback
Environment @ Paths Resolution After the system has been successfully modified (commit)
@ & User Selection
Scheduled Tasks .
Install Execution Stage Execution Options ®
@ Windows Firewall . Run under the LocalSystem account with full privileges (no impersenation)
" S Searches {8 Viait for custom action to finsh befo d
~ g ait for custom action to finish before: proceeding
&) Users and Groups . Paths Resolution
r & @ Fail installation if custom action returns an error
Eg com . Preparing
- Action Text...
& Remove Resources
Server 5 Add Resources
iis 3 Finish Exeaution Execution Stage Condition Q)
() dehard.ubs Move
B ooec = Binstal & Uninstal 8 Maintenance Show upgrade options
— Finish Dialogs Stage .
SA saL Datavases Conditon
s S, Advanced exeaution scenarios...
Project Saved) Notifications

After the package is installed, if we check the hello.cfg file in the INSTALLDIR, we can see that it
has been successfully de-hardcoded.

™ B > ThisPC > Local Disk > Program Files > MyApp

BB intel Name Date medifi

BB Internet Exp B hello.cfg

a test.ini

File Edit View

This is line
This is line
This is line
This is line
Test ValueMyApp
This is line 6
This is line 7

De-hardcoding Files using PowerShell Custom Actions
With PowerShell, the code is much cleaner, shorter, and easier to understand:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 111

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

SpropValue = Al_GetMsiProperty MYPROPERTY
SpropDir = Al_GetMsiProperty APPDIR
SfileDir = SpropDir + "hello.cfg"

Scontent = [System.|O.File]::ReadAllText(S$fileDir).Replace("C:\Program Files\",SpropValue)
[System.|O.File]::WriteAllText(SfileDir, Scontent)

First, we use Al_GetMsiProperty to retrieve our two properties that we used for VBScript, and
define the file directory.

Next, we read all the files and replace everything we find as C:\Program Files\ in it with our
property value, then write all the text back in.

To add the PowerShell script in the Advanced Installer:

. Navigate to the Custom Actions Page.

2. Search for the Run PowerShell script file and add it to the sequence.
3. Click Attached script and select the file created above.

4. Place the sequence last after the Finish Execution.

5. Build and run the installation.

—

[‘3 HEg- ¥ i-Pp e3> Bs Custom Adtions Taols My Application - My Application.aip (English US) - Advanced Installer 20.2 - o x

“ Project View Settings Wizards Custom Actions (2]

X 8l B @ X @

Hew Custom Aftached Installed Show Standard Sequence Move Delete How-to
; -

Action File File Videos
Wizard Launch Clipboard
Custom Actions
o
Add Custom Action | Existing Custom Actions Run PowerShell Script File
e
See Simple View 2 O poer x
L) SUIBULIEY | 45K [Parameter values:
() Run PawersShell inline script
@ Windows Firewall Run PowerShell script file @ G O Saipt from disk
ol
&) Users and Groups
qu com O Attached script
File source: C:\Users\User'Desktopitest.ps1

Server Run & Windows PowerShel script fie on the target computer,

Is
Installation Sequence

ﬁ oDBC During installation rollback
Show: AN Instal Uninstal Maintenance

Powershel Saript Options

t;;& oL Danses After the system has been successfully modified (commit)
= & Searches

Custom Behavior & Paths Resolution Execution Options [O)
O search @ preparing Run under the LocalSystem account with full priviiges (no impersonation)
" . G Remove Resources Wait for custom action to fiish before proceeding
[V=] Preperizs 5 Add Resources 8 Fail installation if custom action returns an error
F& custom Actions G Finish Execution Acton Text.
£ PowershelscriptFile Move

Project Summary

Finich Nialnns Stane —_

References) FindResult 1| Notes () Notfications

) Netifications

The behavior is the same as with VBScript, and the hello.cfg file is correctly de-hardcoded.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 112

https://www.advancedinstaller.com/user-guide/set-windows-installer-property-custom-action.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Delete empty directory

Technically, during the uninstallation process, based on what directories are defined in the
Directory table, the MSI usually handles the deletion of all directories and assures a clean
machine. However, the rules for erasing directories are:

e The directory must be empty

e The directory must appear in the Directory table

Looking at the requirements, it might be the case that the application creates another directory
that isn’t present in the Directory table, and when the MSI is uninstalled, the directories will
remain behind.

As discussed in the MSI Packaging Essentials book, you have the RemoveFile table. To ensure
that a directory is deleted during MSI uninstallation, you need to modify the RemoveFile table in
the MSI. Here's how you can achieve this:

e Open the MSI file using a compatible MSI editing tool like Orca, Wise Package Studio, or
Advanced Installer.
e Locate and open the RemoveFile table within the MSI editing tool. This table specifies
files and directories to be removed during uninstallation.
Identify the directory you want to delete during uninstallation.
Add a new row to the RemoveFile table with the following information:
o Component_: Enter the component identifier for the component that contains the
directory.
o FileName: Specify the name of the directory (not the full path).
o DirProperty: Enter the directory property associated with the directory.
e Save the modified MSl file.

By adding an entry in the RemoveFile table, you instruct the Windows Installer to remove the
specified directory during the uninstallation process. The Windows Installer engine will
automatically remove the directory if it exists and is empty. If the directory is not empty, the
uninstallation will fail unless you have custom actions or scripts in place to handle the removal
of files within the directory.

Delete empty directories with Custom Actions

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 113

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Delete with VBScript

When it comes to removing empty directories, you can go in two ways with VBScript:
e Use the native functions VBScript provides
e Use the RD utility inside the OS

When it comes to native VBScript functions, we can use the following script:

Dim objFSO, objFolder
Dim folderPath

folderPath = "C:\Path\to\folder"

Set objFSO = CreateObject ("Scripting.FileSystemObject")

' Check if the folder exists
If objFSO.FolderExists (folderPath) Then
Set objFolder = objFSO.GetFolder (folderPath)

' Check if the folder is empty
If objFolder.Files.Count = 0 And objFolder.SubFolders.Count = 0
Then
' Delete the empty folder
objFolder.Delete
WScript.Echo "Folder deleted successfully."

Else
WScript.Echo "Folder is not empty."
End If
Else
WScript.Echo "Folder does not exist."
End If

Set objFolder = Nothing
Set objFSO = Nothing

Replace "C:Pathtofolder" with the actual path to the folder you want to inspect. This script
checks the folder's existence, counts the files and subfolders within it, and deletes the folder if it
is empty. Let's look at how the script works:

e The script begins by declaring variables: objFSO, objFolder, and folderPath.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 114

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/rd
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

o folderPath is set to the path of the folder you want to check for emptiness and delete if
empty.

e CreateObject("Scripting.FileSystemObject") creates an instance of the FileSystemObject
to work with file system objects.
objFSO.FolderExists(folderPath) checks if the folder specified by folderPath exists.
If the folder exists, objFolder is set to represent the folder using
objFSO.GetFolder(folderPath).

e The script then checks if the folder is empty by verifying that both objFolder.Files.Count
(number of files) and objFolder.SubFolders.Count (number of subfolders) are zero.
If the folder is empty, objFolder.Delete is called to delete the folder.
If the folder is not empty or if it doesn't exist, appropriate messages are echoed using
WScript.Echo.

e Finally, the script releases the object references by setting objFolder and objFSO to
Nothing.

If we want to use the RD ultility together with VBScript, the following code can be used:

Dim objShell
Dim folderPath

folderPath = "C:\Path\to\folder"
Set objShell = CreateObject ("WScript.Shell")
' Check if the folder exists

If objShell.FileSystemObject.FolderExists (folderPath) Then
' Execute the rd command to delete the folder

objShell.Run "cmd /c rd /s /g """ & folderPath & """", 0, True
WScript.Echo "Folder deleted successfully."

Else
WScript.Echo "Folder does not exist."

End If

Set objShell = Nothing

Here's how the script works:

The script begins by declaring variables: objShell and folderPath.

folderPath is set to the path of the folder you want to delete.
CreateObject("WScript.Shell") creates an instance of the WScript.Shell object, which
allows us to execute shell commands.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 115

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The script checks if the folder specified by folderPath exists using
objShell.FileSystemObject.FolderExists.

If the folder exists, objShell.Run is used to execute the rd command with the appropriate
arguments (/s to delete all files and subdirectories, and /q to perform the deletion silently
without prompts).

The folder is enclosed in double quotes to handle any spaces or special characters in
the folder path.

The third argument of objShell.Run is set to True, which specifies that the script should
wait for the command to complete before continuing.

After the folder is deleted, a success message is echoed using WScript.Echo.

If the folder does not exist, an appropriate message is echoed.

Finally, the script releases the object reference by setting objShell to Nothing.

Delete with PowerShell

For PowerShell, we can use the following script:

SfolderPath = "C:\Path\to\folder"

Check 1f the folder exists

(Test-Path $folderPath) {
Check if the folder is empty
if ((Get-ChildItem S$folderPath | Measure-Object).Count -eq 0) {
Delete the folder
Remove-Item $folderPath -Force -Recurse
Write-Host "Folder deleted successfully."
} else {
Write-Host "Folder is not empty."
}

} else {

Write-Host "Folder does not exist."

Replace "C:\Path\to\folder" with the actual path of the folder you want to check. Here's how the
script works:

The script begins by setting the variable $folderPath to the path of the folder you want to
delete.

The script uses the Test-Path cmdlet to check if the folder specified by $folderPath
exists.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 116

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

If the folder exists, the script uses the Get-Childltem cmdlet to get all items (files and
subfolders) within the folder.

The Measure-Object cmdlet is used to count the number of items. If the count is equal to
zero, it means the folder is empty.

If the folder is empty, the script uses the Remove-ltem cmdlet to delete the folder.

The -Force parameter is used to force the deletion without prompting for confirmation.
The -Recurse parameter is used to delete the folder and its contents recursively.

After deleting the folder, the script writes a success message using Write-Host.

If the folder is not empty, the script writes a message indicating that the folder is not

If the folder does not exist, the script writes a message indicating that the folder does not

[]
[]
[]
[]
[]
[]
[]
empty.
[]
exist.
Delete

empty directories with Advanced Installer

Advanced Installer offers a much simpler method to remove folders generated by the
application. If you navigate to the Files and Folders page and right-click on a desired folder, you

will see

EIETEE

the Uninstall Cleanup option:

- ¢ >@s Files And Folders Tools Your Application - New Project (English US) - Advanced Installer 20.7% - [u} X
“ Project View Settings Wizards Files, Folders and Shortcuts (2]
W Bl 4 [Add Temporary Files = ([Copy x E,Tl @_V‘ @ éFLK 4n D @
-~ B-B B [Import Files = K cut o u MainFeature
. Add Add . N Delete Properties Hash Ignore Refresh Goto foveTo Move To Condition _ Howto Visible
BB~ Har Folder Files~ iz Add Dependencies Files Atfributes Compenent Companent Feature Files T Videos members~
Wizard New Add Clipboard Options Adtions Feature
° Files, Folders and Shortcuts Q Search files !
Folders Name Size Type
See Simple View 2 I8 Torget Computer
Application Folder
Product Information >

%9 Product Details
[# oiaitar signature
@ Updater
%) Upgrades
9 Licensing

”. Multiple Instances

Resources

l% Files and Folders

A snortauts
[3) Tiles

Wb Java Products

Hew Folder »
Hew Sharteut

Add Falder

"I AddFiles

Add Temporary Folder
Add Temporary Files
Import Files »

Conyert Source Paths

Rename

X Delete
i Regist v e
H gistry [uninstall Cleanup
I @ Goto Component
[T File Associations & o P
Mave To »
)
tget AssemOlies Synchronization »
[V T
=" Drivers Repackager »
=
ol [E1 Properties
i senices

Package Definition
] mstall Parameters
[
. Organization
mEE

Project Summary

Full path: ProgramFilestdFolder\New Folder

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

117

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The uninstall cleanup wizard launches, allowing you to specify which files and folders created by
your application will be removed when you uninstall it. To launch this wizard, select the parent
folder, the directory from which you want to delete files and folders, and then choose "Uninstall
Cleanup..." from the context menu. Following the wizard's launch, simply follow the on-screen
instructions to select the files you want to delete.

r —_—

Uninstall Cleanup Wizard *

[Files and Folders :
| Specify files and folders to be removed, :

Parent folder: rogramFiles64Folder \Mew Folder

() Delete folder and all its contents (files and subfolders)

0 Delete only folder contents (the folder itself will not be removed)
[D Delete all files and subfolders
; () Delete only files and subfolders that match:

[|remove non empty folders
| Component: APPDIR s

The removal wil be triggered when the component is uninstalled. Please
choose a component that will be removed only when the entire package is
uninstalled.

| Mext = Cancel

As you can seeg, you can delete the desired folder and all of its subfolders, or just the contents of
the folder, including non-empty directories.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 118

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

r —_—

Uninstall Cleanup Wizard >

| User Interface :
| Configure deanup user interface. §

0 always perform deanup without prompting the user;

| () Ask the user whether he wants to perform deanup
On a full UI uninstall

A ched-box control will be added on VerifyRemoveDlg alowing the user to
| skip deanup.

0n a basic UT uninstall

A dialog box will be displayed during the uninstall process allowing the user to
| skip deanup.

B oo not perform deanup when just upgrading

Furthermore, Advanced Installer allows you to ask the user if the specified folders should be
deleted when the cleanup is performed, or you can perform the cleanup silently.

Process handling

The custom actions topic is one that most beginner IT professionals tend to avoid and it’s to be

understood because MSI technology is a very complex topic, not to mention the best practices
that were developed during the years and somehow expected for the uninitiated to implement in

their installers.
So let’s start an article series where we touch on nine of the most popular custom actions that

are used in the industry.

Terminate Process in Advanced Installer

The terminate process custom action is something very often used when it comes to installers
because you would like to close any running processes from your application before you start
the installation or uninstallation. This ensures that no other files are in use during the
installation/uninstallation operation and ensures a higher success rate for your installation.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 119

https://www.advancedinstaller.com/user-guide/custom-actions.html
https://www.advancedinstaller.com/hub/msi-packaging-academy/ebook.html
https://www.advancedinstaller.com/user-guide/repackaging-best-practices.html%5C
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

For example, let's say | want to terminate the notepad.exe process. With Advanced Installer its
quite easy:

1. Navigate to the Custom Actions Page
2. Search for “Terminate Process” custom action and add it in sequence
3. Type the process name (in our case notepad.exe)

DI EHB-E i~ € =5 Custom Actions Teals Your Application - New Project (English US) - Advanced Installer 20.1.1% - [m] X

“ Project View Settings Wizards Custom Actions [2]
o B < > N Zl [Copy x
IR 5| & e b >4
=N o E; g b 2@ Hoaut o

New Custom Attached Installed Show Standard Sequence Move Delete How-to
" R

Action File File Action Share Videos
Wizard Launch Clipboard
| Custom Actions
o
Add Custom Action | Existing Custom Actions Terminate Process
>
See Simple View 2 O prec X
L) sisesnow P — Properties .
F%‘ Translations Detect process Process name: notepad.exe
: Terminate process @ &
System Changes Send install information to your web server
Environment Process data Execution Time =
@ Scheduled Tasks Terminate a specfic process iFits running on the target machine. (O Immediately
1O When the system is being modified (deferred)
() windows Firewall
Installation Sequence (O buring installation rolback
bole)
Users and Groups After the system has been successfully modified (commit
L Show: Al Install Uninstal Maintenance © " Y ¢)
S con
3 1] Wizard Dialogs Stage .
5—] g 9 Execution Options @
5 Searches 18 Run under the LocalSystem account with full privileges {no impersonation)
% Paths Resolution 18 wait for custom action to finish before proceeding
3 User Selection {8 Fail installation if custom action returns an errar
Install Execution Stage Action Text..
S -
S5y S0L Databases & Searches
Custom Behavior B paths Resolution Execution Stage Condition @
(@) & Preparing
- Search B instal [Uninstall [Maintenance Show upgrade options
57 StopProcess Move
[V=| Propettiss &} Remove Resources Condition: NOT Installed
@ Advanced execution scenarios..
B} Custom Acions 5 Add Resources
= & Finish Execution
[Taie Ecttor)
Finish Dialogs Stage
Project Summary
Ready

4. Build and run the installation

The above example is configured to run only during the installation. If you want to run the same
action during the uninstall sequence check the “Uninstall” checkbox and under condition modify
to the following:

NOT Installed OR REMOVE~=ALL

Terminate Process with VBScript

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 120

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

If you want to use VBScript to close a specific process, this is quite easy to accomplish. There
are two ways to do this:

1. Using the taskkill command available in cmd

Dim oSH
Dim returnVal
Dim shellCommand

Set oSH = CreateObject("WScript.Shell")

shellCommand = "cmd.exe /c taskkill /f /fi " & Chr(34) & "notepad.exe" & Chr(34) & " /t"
returnVal = osh.Run (shellCommand, 0, true)

Set oSH = nothing

This VBScript code is used to terminate all instances of the "Notepad.exe" process running on a
Windows computer. Here's a breakdown of what each line does:

Dim oSH: Declares a variable oSH to hold a reference to the Windows Script Host object.
Dim returnVal: Declares a variable returnVal to hold the return value of the Run method.
Dim shellCommand: Declares a variable shellCommand to store the command that will
be executed in the command prompt.

e Set oSH = CreateObject("WScript.Shell"): Creates an instance of the WScript.Shell object
and assigns it to the variable oSH. This object provides access to the Windows
command prompt.

e shellCommand = "cmd.exe /c taskkill /f /fi " & Chr(34) & "notepad.exe" & Chr(34) & " /t":
Sets the shellCommand variable to a command that will be executed in the command
prompt. The command uses taskkill to forcefully terminate any process with the name
"notepad.exe".

e returnVal = osh.Run(shellCommand, 0, true): Executes the shellCommand in the
command prompt. The Run method launches a new process and waits for it to complete
before continuing (true argument). The return value of the Run method is stored in the
returnVal variable.

e Set 0SH = nothing: Releases the reference to the WScript.Shell object.

To learn more parameters for the taskkill utility type taskkill.exe /? In

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 121

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

2. Using the Win32_Process via WMI query

strComputer =".
Set objWMIService = GetObject("winmgmts:" _
& "{impersonationLevel=impersonate}'\\" & strComputer & "\root\cimv2")

Set colProcessList = objWMIService.ExecQuery _
("Select * from Win32_Process Where Name = 'Notepad.exe™)

For Each objProcess in colProcessList
objProcess.Terminate()
Next

This VBScript code is used to terminate all instances of the "Notepad.exe" process running on a
local computer. Here's a breakdown of what each line does:
strComputer = ".": Sets the strComputer variable to the local computer.
Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate}\\" &
strComputer & "\root\cimv2"): Establishes a connection to the Windows Management
Instrumentation (WMI) service on the local computer. It uses the GetObject method to
retrieve the WMI service object, specifying the impersonation level as "impersonate" to
ensure the script runs with the necessary permissions.

e Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process Where
Name = 'Notepad.exe"): Executes a WMI query to retrieve all instances of the
"Notepad.exe" process running on the local computer. The results are stored in the
colProcessList collection.

e For Each objProcess in colProcessList: Loops through each process in the
colProcessList collection.

e objProcess.Terminate(): Terminates the process represented by the current objProcess
object.

e Next: Moves to the next process in the colProcessList collection and repeats the loop.

In both cases you will get the same result with notepad.exe being stopped, however for more
complex operations the Win32_Process route is preferred. We will touch on the Win32_Process
a bit later in this article when it comes to a specific type of process closure.

Once you have your VBScript ready, open Advanced Installer and perform the following steps:

1. Navigate to the Custom Actions Page

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 122

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

2. Search for “Launch Attached File” and add it to the sequence
3. A window will appear to chose the previously created VBScript

O HEE-#

See Simple View

Slideshow

’__%| Translations
System Changes

Environment

@ Scheduled Tasks

qj windows Firewall
& Users and Groups

EY com

Server

® oosc

fo SQL Databases
Custom Behavior

O search

+

[V=| Propetties
E Custom Actions
[Table Editor
Project Summary

Ready

P ¢

Project View

o 3
a8 B B
N S

Mew Custom Attached Installed Show Standard Sequence Move

Action File File
‘Wizard Launch
©

Custom Actions Tools

Wizards

Custom Actions

X o

Delete How-to
Videos

Settings

2 Copy
o cut
Action Share Bt
Clipboard
Custom Actions
Add Custom Action | Existing Custom Actions
- o
Launch attached file [
Launch installed file
Launch file from property

Launch EXE with working directory
Launch fie

Instalation Sequence
Show: Al Install Uninstall

Wizard Dialogs Stage

Maintenance

@ Searches
(G Paths Resolution

& User selection
Instal Execution Stage

{8 stopnotepad.vbs Move
@ searches

& Paths Resolution

& Preparing

& Remove Resources

@ Add Resources

& Finish Execution

Finish Dialogs Stage

Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2.1%

Launch Attached File

Properties
Attached file: C:\Users\User\Desktop\stoprotepad.vbs
File type: Visual basic script (%.vbs) v
Function:
Action data:

(] Digitally sign file at build time

Execution Time
© immediately
When the system is being modified (deferred)
During installation rollback

After the system has been successfully modified (commit)

Execution Options
Run under the LocalSystem account with full privileges (no impersonation)
18 wait for custom action to finish before proceeding
18 Fail installation if custom action returns an error

Action Text...

Execution Stage Condition
8 nstall

Condition:

[uninstall [Maintenance

®

Show upgrade options

D Notifications

4. Build and run the installer

Terminate Process with PowerShell

Similar to VBScript, there are two ways in which you are able to terminate a process with

PowerShell.

1. Using the taskkill command

Same as VBScript, but with PowerShell it's even easier. All you need to type in a PowerShell

script is:

taskkill /f /im notepad.exe /t

2. Using the Stop-Process cmdlet

5

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

123

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/stop-process?view=powershell-7.3
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Stop-process -name notepad -Force

Both the TASKKILL and Stop-Process allow you to kill a process forcefully with a PID or name.
The difference in Stop-Process is that you can define a process object (a variable or command),
but you can’t define other objects such as system name, username, or password, as you would
in the TASKKILL command.

However, Stop-Process helps you create an autonomous task with scripting powers. For
example, the “-passthru” parameter allows you to return objects from commands, which you can
later use for scripting. The Stop-Process also includes two risk mitigation parameters (-Whatlf)
and (-Confirm) to avoid the Stop-Process from unwanted changes to the system.

As you can see, the difference between the number of lines needed for VBScript and PowerShell
is quite serious. Again, both of the above commands achieve the same result; it's up to you to
decide which is best for you.

Once you have your PowerShell script ready, open Advanced Installer and perform the following
steps:

Navigate to the Custom Actions Page

Search for “Run PowerShell script file” and add it to the sequence
Select “Attached Script”

A window will appear to chose the previously created PowerShell script

Hownh =

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 124

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

P < =g Custom Actions Tools Your Application - New Project (English US) - Advanced Installer 20.1.1* — [m] X

Project View Settings Wizards Custom Actions)

5 copy
>@| b
i o
Paste

New Custom Attached Installed Show Standard Sequence Move Delete How-to
Action File File

Videos
‘Wizard Launch Clipboard
- Custom Actions
O Find
Add Custom Action | Existing Custom Actions Run PowerShell Script File
See Simple View & O power x
5| slideshow Run Powershel infine script B Porameter vacs:
’:‘.\% Translations Run PowerShell script file & & () Script from disk |
) File path:
System Changes
X © Attached saript
Environment
File source: C:\Users\User\Desktop\stoprotepad.ps1
() scneduteq Tasks
Powershell Script Options
@ Windows Firewall
Instalation Sequence .
ion Ti ~
{5‘ Users and Groups Execution Time 84
Show: All Install Uninstal Maintenance
- \Wzard Diak st O Immediately
4 zard Dialogs Stage
E 05 tag O When the system is being modified (deferred)
Server 5 searches O During installztion rolback
Is 15 paths Resolution (O After the system has been successfully modified (commit)
= 15 User selection
ODBC) i
ﬁ Instal Execution Stage Execution Options ®
5 0L Datanases 18Run under the Localsystam account with ful privilegss (no mpersanatior)
= 5 Searches
Custom Behavior B paths Recoluton Wait for custom action to finish before proceeding
& Preparing B Fail installation if custom action returns an error
,O Search £ stopprocess Action Text...
[V=] Properties 15 Remove Resources
5 AddR: N e
¥5 Custom Actions - esourees Execution Stage Condition ®
E¥ PowerShellScriptFile Mave
D Table Editor @ stopnotepad.vb Binstal (Ourinstall (mantenance Show upgrade options
@ stopnotepad.vbs
5 Finish Execution Condition: NOT Installed
Project Summary
e Advanced execution scenarios...
Ready

5. Build and run the Installer

Particular Terminate Process Scenario

While the above examples cover most of the cases when it comes to process closure, there are
specific scenarios that require a more complex scripting approach. One of these cases can be
seen with Java applications.

If you have multiple Java applications opened and check the Task Manager, you will see that you
actually have multiple Java.exe processes running.

E Advanced Techniques in MSI Packaging
Powered by AdvancedInstaller.com 125

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

1% Task Manager - O X
Eile Options View

Processes Performance App history Startup Users Details Services

Name : PID Status User name CPU Memory (ac.. Architec.. Description R
[java.exe 3848 Running theje 00 1,136 K xb4 Java(TM) Platf...

| £ |java.exe 12284 Running theje 00 12444 K x64 OpenlDK Platf...
[java.exe 2320 Running theje 00 1132 K xb4 Java(TM) Platf...

| £ java.exe 8488 Running theje 00 12452 K x64 OpenlDK Platf...
Biusched‘exe 16276 Running theje 00 224 K x86 Java Update S...
[#9 KinoniSvc.exe 4408 Running SYSTEM oo 2,000 K x86 KinoniSvc.exe

s kinonitray.exe 3644 Running theje oo 663 K x86 kinonitray.exe
[#9 LockApp.exe 12608 Suspended theje oo 0K x64 LockApp.exe

[Isass.exe 984 Running SYSTEM oo 5720 K x64 Local Security ...
[®9 mDNSResponder.exe 4308 Running SYSTEM oo 412 K x64 Bonjour Service
[®9 MicrosoftPhotos.exe 13700 Suspended theje oo 0K x64 Microsoft.Phot...
5 MsMpEng.exe 4912 Running SYSTEM oo 91440 K x64 Antimalware S...
=5 MsMpEngCP.exe 11872 Running SYSTEM oo 47,580 K x64 Antimalware S...
./ mspaint.exe 11856 Running theje 00 6,332 K x64 Paint

9 NisSrv.exe 8436 Running LOCAL SER... oo 2,244 K x64 Microsoft Net...
L'notepad++.exe 4116 Running theje 00 5292 K xb64 Notepad++ : a...
.nvcontainer‘exe 4580 Running SYSTEM 0o 2,564 K x64 NVIDIA Contai...
.nvcontainer‘exe 8772 Running theje 00 5512 K x64 NVIDIA Contai...
.NVDispIay.Containerw 2760 Running SYSTEM 00 1,132 K x64 NVIDIA Contai...
.NVDispIay.Containerw 8076 Running SYSTEM 00 2,268 K x64 NVIDIA Contai...
.NVIDIA Web Helper... 7044 Running theje 00 2524 K x86 NVIDIA Web H...
f] OfficeClickToRun.exe 4432 Running SYSTEM 00 2816 K x64 Microsoft Offi...
#B Nnarive ava 14R0A__ Runnina theie nn JRSANK veA Mirracnft Ona

Fewer details End task

As you might imagine, if you are using the above techniques you will close all the Java
processes which is not something we are aiming for. What we need is a way to identify each
Java process for which application it is. The best way to do this is to find the command line for
each Java process and find out which command line corresponds to your application. For full
details on how to get the command line check out this article.

For example, let's assume we have a Java application called Demo. If we search for the
command line of each process we should find something like:

“C:\Program Files\Java\jdk-15.0.2\bin\java.exe” Demo

All we have to do is modify our script to search through all processes and find the exact one
which has the specific string in it, in our case “Demo”.

For VBScript we can use the following:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 126

https://www.alexandrumarin.com/close-specific-java-process-application-with-vbscript/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

On error Resume Next

Dim objWMIService, objProcess, colProcess, Linie, strComputer, strlList
strComputer =""

Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}'\\" &
strComputer & "\root\cimv2")

Set colProcess = objWMIService.ExecQuery _

("Select * from Win32_Process")

For Each objProcess in colProcess

if (objProcess.CommandLine <> ") Then
Linie = objProcess.CommandLine

if (InStr(Linie,'Demo")) Then
objProcess.Terminate

end if

end if
Next

Set objWMIService = Nothing
Set colProcess = Nothing

This VBScript code retrieves a list of running processes on a local computer and terminates any
process whose command line contains the word "Demo". Here's a breakdown of what each line
does:

On Error Resume Next: Instructs the script to continue executing even if an error occurs.
Dim objWMIService, objProcess, colProcess, Linie, strComputer, strList: Declares
variables to hold references to WMI service, process objects, command line text,
computer name, and process list.

strComputer = ".": Sets the strComputer variable to represent the local computer.

Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}'\\" &
strComputer & "\root\cimv2"): Establishes a connection to the WMI service on the local
computer.

e Set colProcess = objWMIService.ExecQuery("Select * from Win32_Process"): Retrieves a
collection of all running processes on the local computer using the ExecQuery method.
For Each objProcess in colProcess: Loops through each process in the collection.

e If (objProcess.CommandLine <>") Then: Checks if the process has a non-empty
command line.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 127

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Linie = objProcess.CommandLine: Assigns the command line text of the process to the

Linie variable.

e If (InStr(Linie,'Demo")) Then: Checks if the command line text contains the substring
"Demo”.

e objProcess.Terminate: Terminates the process if the "Demo" substring is found in the

command line.

Next: Moves to the next process in the collection.

Set objWMiIService = Nothing and Set colProcess = Nothing: Releases the references to

the WMI service and process collection, respectively.

For PowerShell we can use the following:

SCommandLines = Get-CimInstance Win32_Process

foreach (Scommand in SCommandLines)

If (Scommand.CommandLine -like "*Demo*"){
write-host SCommand.processld

Stop-Process -id SCommand.processld

This PowerShell script retrieves a list of running processes using the Get-Ciminstance cmdlet
from the Win32_Process WMI class. It then loops through each process and checks if the
command line of the process contains the word "Demo". If a match is found, it writes the
process ID to the console using Write-Host and terminates the process using the Stop-Process
cmdlet. Here's a breakdown of what each line does:

e SCommandLines = Get-CimiInstance Win32_Process: Retrieves a collection of running
processes using the Get-CimInstance cmdlet and querying the Win32_Process WMI
class.

e foreach (Scommand in SCommandLines): Begins a loop to iterate through each process

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 128

https://www.alexandrumarin.com/close-specific-java-process-application-with-powershell/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

in the SCommandLines collection.

e If (Scommand.CommandLine -like "*Demo*"): Checks if the command line of the process
contains the substring "Demo".

e Write-Host SCommand.processld: Writes the process ID to the console. This line is used
for displaying information and can be removed if not needed.

e Stop-Process -id SCommand.processld: Terminates the process using the Stop-Process

cmdlet and the process ID obtained from SCommand.processld.

}: Closes the if statement.

}: Closes the foreach loop.

Once you have the script edited as desired, follow the above steps to add it in Advanced Installer
and test the installer.

Detect Process in Advanced Installer

There might be cases where you want to search if a different process is available on the
machine before starting the installation or you want to use this knowledge in order to close
other processes with the above mentioned methods.

Advanced Installer offers a quick and easy way to detect if a certain process is running.
1. Navigate to the Custom Actions Page

2. Search for “Detect Process” custom action and add it in sequence
3. Type the process name (in our case notepad.exe)

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 129

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

FIGCERE T

Project View settings ‘Wizards
At B f " co
X S B Go 2> X O
5 N - 08 =l X cut

New Custom Aftached Installed Show Standard Sequence Move Delete How-to

Custom Actions

Action File File Action Share Paste Videos
Wizard Launch Clipboard

Custom Actions
fel

Add Custom Action | Existing Custom Actions
See Simple View g

0 proce

u Slideshow

[~ Transtations
System Changes
Environment
() scnedutea Tasks
() windows Firewal

baly]
[+ Users and Groups

ES com

Display error message
Detect process

Terminate process

Send installinformattion to your web server

Process data

Installation Sequence

Wizard Dialogs Stage

Server & searches
F & Paths Resoluti
s % Paths Resolution

5 User selection
& ooec

S5 s0LDatavases

Install Execution Stage

5 searches
5 DetectProcess

5 Paths Resolution

Custom Behavior

O Search .
’ 5 Preparing
&7 stopProcess

{5 Remove Resources

(V=] Properiies
[custom Acions

[E5] Tanle Editor

Project Summary

5 Add Resources
E¥ PowerShellScriptFile
) stopnotepad.vbs

8L Finish Fxention

Ready

Defermine if a spedific process & running on the targef madine.

Show: All Instal Uninstal Maintenance

x
& &
Move

Custom Actions Tools Your Application - New Project (English US) - Advanced Installer 20.1.1% — a

Detect Process

Properties

Process name: netepad.exe

This custom action will set the Al PROCESS_STATE property to Running or Stopped, in response
to the process running or not. Tell me more about Detect Process custom action

Execution Time @
© Immediately
VWhen the system is being modified (deferred)
During installation rollback

After the system has been successfuly modified (commit)

Execution Options @
Run under the Localsystem account with full privieges (na impersonation)
{8 Wit for custom action to finish before proceeding

8 Fail installation if custom action returns an error

Action Text...

Execution Stage Condition @
B nstal (O uninstal ([(IMaintenance show upgrade options
Condition: NOT Installed

Advanced execution scenarios. ..

4. Build and run the installation

However, this custom action only sets the AI_PROCESS_STATE property which you can later on
use throughout your installer. For more information about it, check out this article.

Detect process with VBScript

To detect a process with VBScript we are going to use the Win32_Process WMI which we earlier
used to terminate a process. If we want to detect if notepad is opened, we can use the

following:

On error Resume Next
Dim strComputer

Dim objWMIService
Dim colProcessList
Dim objProcess

strComputer =".

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

130

https://www.advancedinstaller.com/user-guide/qa-detect-or-stop-process.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}'\\" &
strComputer & "\root\cimv2")
Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process Where Name =
'notepad.exe™)
If colProcessList.Count > 0 Then
msgbox "Notepad is opened”
End If
Set objWMIService = Nothing
Set colProcessList = Nothing

This will open up a message box which states that “notepad is opened”. You can consider what
you want to do if a certain process is found on the machine, for example returning a successful
state of the execution and continuing with the installation of the application or setting up a
variable in the MSI as such:

On error Resume Next
Dim strComputer

Dim objWMIService
Dim colProcessList
Dim objProcess

strComputer =".

Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}'\\" &
strComputer & "\root\cimv2")
Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process Where Name =
'notepad.exe™)
If colProcessList.Count > 0 Then
Session.Property("ISPROCESSRUNNING") = "Yes"
End If
Set objWMIService = Nothing
Set colProcessList = Nothing

This VBScript checks if the process "notepad.exe" is running on the local computer and will set
the ISPROCESSRUNNING MSI variable to Yes. Here's a breakdown of what each line does:

e On Error Resume Next: This statement allows the script to continue execution even if an

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 131

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

error occurs.

e Dim strComputer: Declares a variable named strComputer to store the name of the
computer. In this case, it is set to "." which represents the local computer.

e Dim objWMIService: Declares a variable named objWMIService to hold a reference to the
WMI service.

e Dim colProcessList: Declares a variable named colProcessList to hold a collection of
processes.

e Dim objProcess: Declares a variable named objProcess to represent a single process
object.

e strComputer =".": Sets the value of the strComputer variable to "." to represent the local
computer.

e Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}'\\" &
strComputer & "\root\cimv2"): Retrieves a reference to the WMI service using the
GetObject method and the appropriate WMI namespace.

e Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process Where
Name = 'notepad.exe"): Executes a query against the WMI service to retrieve a collection
of processes with the name "notepad.exe".

e If colProcessList.Count > 0 Then: Checks if the count of processes in the collection is
greater than zero, indicating that the "notepad.exe" process is running.

e Session.Property("ISPROCESSRUNNING") = "Yes": If the "notepad.exe" process is
running, it sets a property named "ISPROCESSRUNNING" to the value "Yes". This property
can be accessed by an installer session to perform conditional actions based on the
process status.

e Set objWMIService = Nothing and Set colProcessList = Nothing: Releases the references
to the WM service and the process collection to free up system resources.

Make sure that the ISPROCESSRUNNING property is available in the MSI before executing the
script.

Detect Process with PowerShell

With PowerShell we can achieve the same results when it comes to process detection. The
following code can be used:

Snotepad = Get-Process notepad -ErrorAction SilentlyContinue
if (Snotepad) {

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 132

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Write-host “notepad is running”

}

Of course you can also set an MSI Property with PowerShell in case a process is running to
achieve the same result as Advanced Installer does. To do this, we can use the following code:

Snotepad = Get-Process notepad -ErrorAction SilentlyContinue
if (Snotepad) {
Al_SetMsiProperty ISPROCESSRUNNING "Yes"

You can also write the PowerShell code directly into Advanced Installer by doing the following:

1. Navigate to the Custom Actions Page

2. Search for “Run PowerShell inline script” custom action and add it in sequence
3. Write the above script

Q HE-%¥ P < i1 Custom Actions Teols Your Application - Your Application.aip (English US) - Advanced Installer 20.1.1% — a X
“ Project View Settings Wizards Custom Actions [2]
Y- <> . co
T {0} ol 5 @] 'BCopy x
X, o E:‘, Yy t" e Xocut D
New Custom Attached Installed Show Standard Sequence Move . _ Delste How-to
Action File File hare Videos
Wizard Launch Clipboard
Custom Actions
fel
Add Custom Action | Existing Custom Actions Run PowerShell Inline Script
- - -
See Simple View 2 0 pover x
p ~ > Parameter values:
L] Siideshow Run Powershelinfine script & & !
Az] Transiations Run Powershell saript file $notepad = Gst-Frocess notepad -ErrorAction SilentlyContinue
e if ($notepad) {
System Changes AI_SetMsiProperty ISPROCESSRUNNING "Yes"
Environment
@ Scheduled Tasks Run an inline Windows PowerShell script on the target.
(D Windows Firewall
Installation Sequence
[l [s)
b Users and Groups i i 7ol
- Show: ANl Instal Urinstal Maintenance Execution Time A
[f},_]j COom Wizard Dialogs Stage © Immediately
o Ow
Server £} searches () When the system is being medified {deferred)
& s & paths Resolution (O During installation rollback.
. y ~
d £ User selecton () After the system has been successfully modified (commit)
&} oo=c Instal Execution St
— nstall Execution Stage Execution Options @
Efy SQL Databases -
N 5 searches Run under the LocalSystem account with full privieges (no impersonation)
Custom Behavior 57 DetectProcess Wait for custom action to finish before proceeding
O search 15 Paths Resolution 8 Fail installation if custom action returms an error
’ -
5 Preparing Action Text...
7 custom Actons & AddResources)
N Powershellsaiptinline Move Execution Stage Condition @
D Table Editor 5 Finish Execution B 1nstal B Uninstal 8 Maintenance Show uparade optians
Project Summary Finish Dialogs Stage Condition: NOT Installed
) HNetifications

4. Build and run the installation

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 133

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Wait for Process with VBScript

As a last example we can think of is the case where you need to wait for a specific process to
close before continuing with the installation process. To achieve this with VBScript, the
following code can be used:

On error Resume Next
Dim strComputer

Dim objWMIService
Dim colProcessList
Dim objProcess

strComputer =",

Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}'\\" &
strComputer & "\root\cimv2")
Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process Where Name =
'notepad.exe")
Do While colProcessList.Count >0

Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process Where
Name = 'notepad.exe™)

Wscript.Sleep(1000) 'Sleep 1 second
Loop
Set objWMIService = Nothing
Set colProcessList = Nothing

While notepad.exe is running, the script continues to run, thus blocking the installation to
continue. Of course this can be later modified to show a certain message to the user until the
process is closed. Here's an explanation of what each line does:

e On Error Resume Next: This statement allows the script to continue execution even if an
error occurs.
e Dim strComputer: Declares a variable named strComputer to store the name of the

computer. In this case, it is set to "." which represents the local computer.
e Dim objWMIService: Declares a variable named objWMIService to hold a reference to the

WMI service.

e Dim colProcessList: Declares a variable named colProcessList to hold a collection of
processes.

e Dim objProcess: Declares a variable named objProcess to represent a single process
object.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 134

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e strComputer = ".": Sets the value of the strComputer variable to "." to represent the local
computer.

e Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}'\\" &
strComputer & "\root\cimv2"): Retrieves a reference to the WMI service using the
GetObject method and the appropriate WMI namespace.

e Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process Where
Name = 'notepad.exe™): Executes a query against the WMI service to retrieve a collection
of processes with the name "notepad.exe".

e Do While colProcessList.Count > 0: Starts a loop that continues as long as there are
processes in the collection.

e Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process Where
Name = 'notepad.exe"): Re-executes the query to refresh the collection of processes with
the name "notepad.exe".

e Wscript.Sleep(1000): Pauses the script for 1 second using the Sleep method to avoid
continuous CPU usage during the loop.

e Loop: Returns to the start of the loop and checks the process collection count again. If
there are still processes, the loop continues.

e Set objWMIService = Nothing and Set colProcessList = Nothing: Releases the references
to the WM service and the process collection to free up system resources.

Wait for Process with PowerShell

With PowerShell it's even easier to wait for a process because PowerShell offers the
Wait-Process cmdlet which can be easily used as such:

Wait-Process -name notepad

Of course you can easily add it in Advanced Installer as previously shown with the process
detection.

Firewall

To make the environment more secure it's important to properly define and configure the firewall
of your machines. However, there might be times when a specific executable must be added as
an exception to the Inbound or Outbound rules of the firewall in order to have access.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 135

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/wait-process?view=powershell-7.3
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

In this article let’s have a look at how you can configure firewall rules via MSI with Advanced
Installer, VBScript and Powershell.

Firewall rules with VBScript

Although you can use the HNetCfg.FwAuthorizedApplication object with VBScript to define
firewall rules, the easiest method is to call the netsh.exe utility that it's included in Windows.
This command-line utility allows you to modify the network configuration of a certain machine
that is currently running. One of the commands available for netsh is advfirewall which allows
you to change to the netsh advfirewall context. Jumping further into the context, you can type

netsh advfirewall firewall

Into a cmd window and this will give you the following options:

? - Displays a list of commands.

add - Adds a new inbound or outbound firewall rule.
delete - Deletes all matching firewall rules.

dump - Displays a configuration script.

help - Displays a list of commands.

set - Sets new values for properties of a existing rule.
show - Displays a specified firewall rule.

So basically if we want to add a firewall rule we can use:

netsh.exe advfirewall firewall add rule name=FRIENDLYNAME dir=IN/OUT
action=ALLOW/DENY program=PATHTOEXE enable=YES/NO profile=domain

If we want to remove a firewall rule we can use:

netsh.exe advfirewall firewall delete rule name=FRIENDLYNAME

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 136

https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-contexts
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Now that we are aware of how netsh is working with firewall rules, let's assume we have a
HelloWorld.exe that we want to add to the inbound firewall and we want to allow everything.
With VBScript we can produce the following:

Dim WshShell

Dim programPath2, programfiless, programfiles

Set WshShell = CreateObject("Wscript.Shell")
programfiless=WshShell.ExpandEnvironmentStrings("%ProgramFiles(x86)%")
programfiles=WshShell.ExpandEnvironmentStrings("%ProgramW6432%")

ProgramPath2 = programfiless & "\Program Files (x86)\Caphyon\Firewall
App\HelloWorld.exe"

WshShell.Run "netsh.exe advfirewall firewall add rule name=HelloWorld dir=in action=allow
program="& chr(34) & ProgramPath2 & chr(34) & " enable=yes profile=domain ", 0, False

This VBScript performs the following actions:

e Dim WshShell: Declares a variable named WshShell to hold a reference to the Windows
Script Host Shell object.

e Dim programPath2, programfiless, programfiles: Declares variables to store the paths of
program files.

e Set WshShell = CreateObject("Wscript.Shell"): Creates an instance of the Windows Script
Host Shell object.

e programfiless = WshShell.ExpandEnvironmentStrings("%ProgramFiles(x86)%"): Retrieves
the path of the "Program Files (x86)" folder using the %ProgramFiles(x86)% environment
variable.

e programfiles = WshShell.ExpandEnvironmentStrings("%ProgramW6432%"): Retrieves the
path of the "Program Files" folder using the %ProgramW6432% environment variable.

e ProgramPath2 = programfiless & "\Program Files (x86)\Caphyon\Firewall
App\HelloWorld.exe": Concatenates the program file path with the specific file name to
create the full path of the executable file "HelloWorld.exe".

e WshShell.Run "netsh.exe advfirewall firewall add rule name=HelloWorld dir=in
action=allow program="& chr(34) & ProgramPath2 & chr(34) & " enable=yes
profile=domain ", 0, False: Runs the netsh.exe command to add a firewall rule named
"HelloWorld" with the specified properties. The command allows incoming traffic (dir=in),
allows the specified program (program=) with the path of "HelloWorld.exe", enables the
rule (enable=yes), and applies the rule to the domain profile.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 137

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Next, open Advanced Installer and navigate to the Custom Actions Page. In here, search for the
Launch attached file and select the location of the VBScript. Next, configure the custom action

to execute as shown below:

O HE-X RS

Settings

Project View

Action
Wizard Launch

el

See Simple View

L] siigeshow

E‘ Translations
System Changes
Environment
G—) Scheduled Tasks

qj windows Firewall
e
[+4) Users and Groups
ES cou
Server

=S

®; oosc

‘fﬂ SQL Databases

Gustom Behavior
‘O Search
’\T‘:] Properties
F\ Custom Actions
[Table Editor
Project Summary

Ready

Mew Custom Attached Installed Show Standard Sequence Move ; .
Fil I ion Paste

it @ ‘BEc
& oo Pom

Custom Actians Toals Firewall App - Firewall App.aip (English US) - Advanced Installer 202

Custom Actions

X o

Delete How-to
Videos

Clipboard
Custom Actions
Add Custom Action | Existing Custom Actions

o

gn

Launch attached file & £
- 1
Launch installed file

Launch il from property
Launch EXE with working directory

not be instaled on

Instalation Sequence

show: All Instal Uninstal Maintenance
Wizard Dialogs Stage

@ Searches
& Paths Resolution

& User selection
Instal Execution Stage

@ Searches

& Paths Resolution
& Ppreparing

% Remove Resources
& Add Resources

3 addfrules.vbs Move

G Finich Execution

Finish Dialogs Stage

Launch Attached File

Properties
Attached file: C:\Jsers\ser\Desktop\add fin rules.vbs
File type: Visual basic script {=.vbs) “
Function:
Action data:

[pigitally sign file at build time

Execution Time
O Immediately
1 When the system is being modified (deferred)
() During installation rollback
() After the system has been successfully modified (commit)

Execution Options
18 Run under the LocalSystem account with full privileges (no impersonation)
18 Wait for custom action to finish before proceeding
18 Fail installation if custom action returns an error

Action Text...

Execution Stage Condition

8 Install

Condition:

(D uninstall [Maintenance

®

Show upgrade options

As a best practice it's also important to remove the firewall rule during the uninstallation. For
that, it means we need another Custom Action and a different VBScrit to remove our rule. The

VBScript code is:

Dim WshShell
Set WshShell = CreateObject("Wscript.Shell")

WshShell.Run "netsh.exe advfirewall firewall delete rule name=HelloWorld"

After that, follow the same exact steps as above and configure the custom action as following

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

D

138

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O Hes- &

Froject

New Custom Attached Inst;
ile

Action Fi Fill
Wizard Launch
©

See Simple View

| sidesnow
E‘ Translations
System Changes

Environment

@ Scheduled Tasks

m Windows Firewall

& Users and Groups

E;E COM

Server

fa SOL Databases
Custom Behavior

O searcn

¢

]\T:] Properties

F’? Custom Actions

[Tate Editor

Project Summary

Project Saved

P ¢
View

alled Show Standard Sequence Move -
e Action Paste

Wizards Custom Actions

Copy
b >@ B x
% oo per o
Delete How-to
e Videos

Settings

Clipboard
Custom Actions
Add Custom Action | Existing Custom Actions
- o
Launch attached file
Launch installed file

Launch file from property
Launch EXE with working directory

in the MSI padkage, but wil i

Instalation Sequence
Show: ANl Instal Uninstal Maintenance
Wizard Dialogs Stage

@ Searches

& Paths Resolution

& User selection
Instal Execution Stage

@ Searches

@ Paths Resolution

& Preparing

& Remove Resources

& Add Resources

@ remfurdles.vbs

@ addfrules.vbs

& Finish Execution

Finish Dialogs Stage

0t be installed on

Move

Custom Actions Toals Firewall App - Firewall App.aip (English US) - Advanced Installer 202

Launch Attached File

Properties
Attached file: C:Wsers\User\Desktopirem fin rules.vbs
File type: Visual basic script (%.vbs) v
Function:
Action data:

(] Digitally sign file at build time

Execution Time
O Immediately
1O When the system is being modfied (deferred)

() During installation rollback
() After the system has been successfully modified (commit)

Execution Options
18 Run under the LocalSystem account with full privileges (no impersonation)
18 wait for custom action to finish before proceeding
18 Fail installation if custom action returns an error

Action Text...

Execution Stage Condition

@ uninstall (Oftaintenance

[tnstall

Candition:

®

Show upgrade options

Firewall rules with PowerShell

While netsh is still available and widely used by the community, starting with Windows 8.1 you
can use the buit-in NetSecurity PowerShell module to manage firewall operations.

In general, there are 85 commands available in this module that you can use in Windows 10/11,
but we are only interested in two of them. To add a firewall rule you can simply do:

SHelloWorldLocation = ${env:ProgramFiles(x86)} + "\Caphyon\Firewall App\HelloWorld.exe"

New-NetFirewallRule -Program SHelloWorldLocation -Action Allow -Profile Domain
-DisplayName “HelloWorld” -Description “Block Firefox browser” -Direction Inbound

cmdlet:

To remove a firewall rule is even simpler as we only use the Remove-NetFirewallRule PowerShell

Remove-NetFirewallRule -DisplayName "HelloWorld"

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

D

139

https://learn.microsoft.com/en-us/powershell/module/netsecurity/remove-netfirewallrule?view=windowsserver2022-ps
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Next, open Advanced Installer and navigate to the Custom Actions Page. In here, search for the
Run PowerShell script file and select the location of the PowerShell script. Next, configure the

custom action to execute as shown below:

Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2%

O HE-*% - € > @< Custom Actions Toals
Project View Settings Wizards Custom Actions
5 <>
Ao r For) (2 Copy
& & T e o
New Custom Attached Installed Show Standard Sequence Move Delete How-to
Action Fil Action Paste Videos
Wizard Launch Clipboard
- Custom Actions
or
Add Custom Action | Existing Custom Actions Run Powershell Script File
-
See Simple View - 0 power x
> Parameter values:
m Slideshow Run PowerShell iniine script :
’___|‘¥i Translations Run PowerShell script file [Ir () Script from disk
N File path:
System Changes
© attached script
Environment
File source: C:\Users\User\Pesktop\addfrule.ps1
G_) Scheduled Tasks Run 5 Windows PowerShell script e on the target compuiter.
PowerShell Script Options
qj Windows Firewall
Instalation Sequence
£ Users and Groups - - - Execution Time @
L4 Show: Al Instal Uninstal Maintenance
o Wizard Diak 5) Immediately
COoM izard Dialogs Stage
E?;’l Y g 9 O When the system is being modified (deferred)
Server G searches () buring installation rolback
[
5. Paths Resolution O After the system has been successfully modified (cammit)
& User selection
Instal Execution Stage Execution Options @
@ 8 Run under the LocalSystem account with ful privileges (no impersanatior)
& searches
Wait for custom action to finish before proceedin
Custom Behavior Paths Resoluton ’ :
- 18 Fal installation if custom action returns an error
O search o Fresemne Action Text.
. G Remove Resources cronTedt.
[V=] Properties & Add Resources
Move ®

'tg4 Custom Actions

[Table Editor

EX PowerShellScriptFie
& Finish Execution

Finish Dialogs Stage

Project Summary

Project Saved

Execution Stage Condition

[uninstall [Maintenance

8 nstall

Condition:

Show upgrade options

To also add the remove firewall PowerShell script, follow the same steps as above and do the

following configurations:

5

Advanced Techniques in MSI Packaging

Powered by AdvancedInstaller.com

140

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

9 H By - % i-P € [: I Custom Actions Tools Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2* - [m]
Froject View Settings Wizards Custom Actions
Fo) < rey [z Copy x
pi=iy E, TR
o Loy 3 X, cut u
Jo
New Custom Attached Installed ~ Show Standard Sequence Move Delete How-to
Action File File ion Paste Videos
Wizard Launch Clipboard
| Custom Actions
Add Custom Action | Existing Custom Actions Run PowerShell Script File
See Simple View 0 power
Parameter values:
| sidesnow Run PowerShel inine seript B
E"\% Translations Run Powershell script file (O seript from disk.
. File path:
System Changes
© Attached script
Environment
File source: C:\Users\User\Desktop\remfurule ps1
G_) Scheduled Tasks Run 2 Windows Porershel s 7 the target computer.
PowerShell Sript Options
qj Windows Firewall
Instalation Sequence
A8 Users and Groups Execution Time @
] Show: All Instal Uninstal Maintenance
g | .) Immediately
COM Wizard Dialogs Stage
Fs5 cou 9 9 1 When the system is being modified (deferred)
Server 3} Searches (O During installation rollback
s 5} Paths Resolution () After the system has been successfully modified (commit)
& User selection
0DBC i
ﬁ Instal Execution Stage Execution Options ®
SA s50LDatabases & Searches @5 under the LocaiSystem account with ful privieges (no i).
Custom Behavior & Paths Resolution Wait for custom action to finish before proceeding
& Prepari 18 Fail installation if custom action returns an error
O Search Treperng Action Text.
¢ 5 Remove Resources crontext..
[V=] Properties & Add Resources
PowerShelScriptFie_1 M - o
&4 Custom Actions [\Boom tekseifc e Execution Stage Condition @
EX PowerShellScriptFile
D Table Editor & Frish Execut Omstal B urinstal [Maintenance Show upgrade options
% Finish Execution
Condition:
Project Summary Finish Dialogs Stage
Project Saved

Firewall rules with Advanced Installer

If you don't like to code, Advanced Installer made it much simpler to add firewall rules. First,
navigate to the Windows Firewall page.

Next, click on New Rule. This will open a new window in which you can define the necessary
details for your exception:

5

Powered by

Advanced Techniques in MSI Packaging
AdvancedInstaller.com

https://www.advancedinstaller.com/user-guide/firewall.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

QO HEE- = - e3> B3| Windows Firewall Tools
Project View Settings Wizards Windows Firewall [7]

New Firewall Import Delete
Rule Firewall Rule

MNew

Windows Firewall
o

42 Exceptions Options
See Simple View - Windows Firewall Exception *

. New Rule...
| Slideshow Displ... s Protacol Part Profies Group
8 Helloworld Inbou ANY * Active

Edit Ruie...
A% Translations Direction: Inbound v

Import Rule...
System Changes Display name: HelotWorld

Environment Group:

(D) scnesuled Tasks Program path: [#elotarld.exe)

@ Windows Firewall Protocol: ANY ~
a', Users and Groups Port number:

E;_]j com Condition: ((?Helloborld.exe=2) AND (
Server Action: Allow Connection -
L] Network scope: Any computer

ﬁ opBC Network profile: Active

E.-;: SOL Databases
&= s Concel

Custom Behavior
O Search
’
[V<] Properties
F Custom Actions

[Tavle Editor

Project Summary

Delete Rule

|Build finished successfully.

As you can see, you can easily choose the direction, display name, program path, protocol and
other settings directly from the GUI. In our case we wanted to mimic the above usages of netsh
and PowerShell and left everything as before in the GUI.

And that is it, Advanced Installer will automatically create the exception during the installation

and during the uninstallation it will remove the exception from the firewall, not needing to create
two separate actions for it.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 142

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

| Windows Firewall Taols

O HE- % |
Froject

@ X

Mew Firewall Import Delete
ule Firewall Rule

P €@

View Settings Wizards Windows Firewall

Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2

| windaows Firewall

2 Exceptions Options
See Simple View =

~ Direction

Action

Appication

Protocol

Port Profiles

Group

m Slideshow Displ...

Allow Connection

[=tielioWorld.exe]

ANY.

= Active

W Helioiorid” Inbound
A% Translations

System Changes

Environment

G—) Scheduled Tasks

qj Windows Firewall

:ﬁ Users and Groups

ﬁ;‘_,‘; COM

Server

@ ooec

f@ SOL Databases
Custom Behavior

‘O Search

[V=] Properties

Custom Actions

Table Editor

Project Summary

Build finished successfully.

New Rule...
EditRule...

Import Rule...

Delete Rule

All you have to do is build and install the MSI package. After the installation, if we check the

Inbound rules, our rule is there:

ﬂ Windows Defender Firewall with Advanced Security
Eile Action

= x5 BB

View Help

£ Inbound Rules
Outbound Rules
Connection Security Rules

Mame

> B Monitoring

|
s
@IMicrosoft.Windows.Search 1.16.0.220..

Group

@{Microseft.Windows.Searc...

Profile Enabled
Public

All Yes

All Yes

All Yes

Al Yes
Public Yes
Public Yes

Private... Yes
Private... Yes

All Yes
All Yes
Al Yes
Al Yes
Public Yes
Public Yes
Public Yes
Public Yes
All Yes

Domain Yes
Private Yes

All Yes
All Yes
Domai... Yes

Action

Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow
Allow

@ Windows Defender Firewall witl] [l et L

Override

Neo
Ne
Ne
No
No
No
Mo
Ne
Ne
No
No
No
No
Neo
Ne
Ne
No
No
No

Neo
No

Actions

Program

C\Pregram Files\k
CiUsers\User\App
C:\Program Files\F
C:\Program Files\T
C:\Program Files (s
C:\Program Files [|
D:\games\overwat
Di\games\overwat
Ci\Program Files (»
C:\Program Files
C:\Program Files (s
C\Program Files [
C:\Program Files\T
C\Pregram Files\T
C:\Pregram Files\T
C:\Pregram Files\T
Any

C:\Program Files
C\Program Files [
C\Users\UserApp
C\Users\User\App
Any

Inbound Rules

&3 NewRule..

T Filter by Profile

T Filter by State

7 Filter by Group
View

|6l Refresh

|5 Export List...

H Help

HelloWorld

Disable Rule

& cut

52 Cepy

K Delete

[=] Properties

H Hep

vy v v v

5

Powered by AdvancedInstaller.com

Advanced Techniques in MSI Packaging

143

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Install/uninstall driver

Working with drivers is not something to be worried about. Although the MSI technology does
not offer a native way via the database tables that you can use, the OS is offering multiple
choices for you to achieve this goal.

Let’'s have a look at how you can install drivers with MSI by taking different approaches.

DPInst

Driver Package Installer (DPInst)is a component of Driver Install Frameworks (DIFx) version 2.1.
DIFx simplifies and customizes the installation of driver packages for devices that you wish to
install on the computer. This type of installation is commonly known as a software-first
installation. DPInst also automatically updates the drivers for any installed devices that are
supported by the newly installed driver packages.

DPInst searches for INF files for driver packages in the DPInst working directory which by
default is the DPInst root directory, which is the directory that contains the DPInst executable
(DPInst.exe).

You can also use the /path command-line switch to specify a custom DPInst working directory.

The log files for the DPInst utility can be found in the %SystemRoot%\DPInst.log. However,
DPInst does not come natively with the OS and must be added into the MSI package, preferably

near the driver .inf files.

To install a driver with DPInst, the following command can be used:

DPInst_x64.exe /F /LM /S

For the full list of commands which DPInst supports, you can use the following:

DPInst_x64.exe /?

PnPUtil

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 144

http://msdn.microsoft.com/en-us/library/ff544838.aspx
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Unlike DPInst, PnPUtil tool comes natively into the OS and lets an administrator perform actions
on driver packages. lets an administrator perform actions on driver packages. With it you can
add a driver package to the store, install a driver package on the computer and delete a driver
package.

To install a driver with PnPUtil, the following command can be used:

PNPUtil.exe /add-driver PATH\DRIVERNAME.inf /install

For the full list of commands which PnPULtil supports, you can use the following:

PNPUtil.exe /?

Now that we know two methods which we can use to install the drivers, let's see how we can
use them in VBScript or PowerShell.

Installing drivers with VBScript

Let's take a look at both utility tools and create the necessary scripts to install a driver. Let's
assume that the driver .inf name is HP.inf. Also, let's assume that we are going to place the
DPInst.exe utility directly into the C:\Windows\DPInst folder and there we are going to place the
.inf file as well.

The script to install the driver is:

Option Explicit
On Error Resume Next

Dim strCmd,WshShell,strinstalldir

Set WshShell = CreateObject("WScript.Shell")
strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEMROOT%")

strCmd = chr(34) & strinstalldir & "\DPInst\DPInst_x64.exe" & chr(34) &" /F /LM /S"

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 145

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/pnputil
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

WshShell.Run strCmd

Set WshShell = Nothing

This VBScript performs the following actions:

e Option Explicit: Enables explicit variable declaration, ensuring that all variables are
declared before use.

On Error Resume Next: Instructs the script to continue execution even if an error occurs.
Dim strCmd, WshShell, strinstalldir: Declares variables to hold the command, Windows
Script Host Shell object, and the installation directory.

e Set WshShell = CreateObject("WScript.Shell"): Creates an instance of the Windows Script
Host Shell object.

e strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEMROOT%"): Retrieves the
path of the Windows installation directory using the %SYSTEMROOT% environment
variable.

e strCmd = chr(34) & strinstalldir & "\DPInst\DPInst_x64.exe" & chr(34) & " /F /LM /S":
Constructs the command to be executed. It combines the installation directory path with
the relative path to the "DPInst_x64.exe" executable. The /F, /LM, and /S are
command-line switches or parameters for the executable.

e WshShell.Run strCmd: Runs the command stored in strCmd using the Run method of the
Windows Script Host Shell object. This executes the DPInst_x64.exe installer with the
specified command-line switches.

e Set WshShell = Nothing: Releases the reference to the Windows Script Host Shell object.

In summary, the script runs the DPInst_x64.exe installer, located in the DPInst subfolder under
the Windows installation directory, with the command-line switches /F, /LM, and /S. The purpose
and functionality of the DPInst_x64.exe installer may depend on the specific software or device
driver being installed.

The script to uninstall the driver is:

Option Explicit
On Error Resume Next

Dim strCmd,WshShell,strinstalldir,strcmd1, strcmd2
Set WshShell = CreateObject("WScript.Shell")

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 146

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEROOT%")

stremd= chr(34) & strinstalldir & "\DPInst\DPInst_x64.exe" & chr(34) & " /S /U " & chr(34) &
strinstalldir & "\DPInst\HP.inf" & chr(34) &" /D"

WshShell.Run strCmd

Set WshShell = Nothing

This VBScript performs the following actions:

e Option Explicit: Enables explicit variable declaration, ensuring that all variables are
declared before use.

On Error Resume Next: Instructs the script to continue execution even if an error occurs.
Dim strCmd, WshShell, strinstalldir, strCmd1, strCmd2: Declares variables to hold the
commands, Windows Script Host Shell object, and the installation directory.

e Set WshShell = CreateObject("WScript.Shell"): Creates an instance of the Windows Script
Host Shell object.

e strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEROOT%"): Retrieves the path
of the Windows installation directory using the %SYSTEROOT% environment variable.

e strCmd = chr(34) & strinstalldir & "\DPInst\DPInst_x64.exe" & chr(34) & " /S /U " & chr(34)
& strinstalldir & "\DPInst\HP.inf" & chr(34) &" /D": Constructs the command to be
executed. It combines the installation directory path with the relative paths to the
"DPInst_x64.exe" executable and "HP.inf" file. The /S, /U, and /D are command-line
switches or parameters for the executable.

e WshShell.Run strCmd: Runs the command stored in strCmd using the Run method of the
Windows Script Host Shell object. This executes the DPInst_x64.exe installer with the
speciflied command-line switches and the "HP.inf" file for driver uninstallation.

e Set WshShell = Nothing: Releases the reference to the Windows Script Host Shell object.

Once we have the scripts done and the DPInst utility downloaded, open Advanced Installer and
first navigate to the Files and Folders Page. In here, create a new directory under Windows
Volume\Windows called DPInst and add the DPInst utility with the HP.inf file near it.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 147

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Product Information

7 Product Details
E\/ Digital Signature

@ Updater
% Upgrades
@ Licensing
(& Multiple Instances

Resources

@ Files and Folders
F Shortcuts

3] Tiles

r:"P Java Products

a&j’ Registry

D-_Ll File Associations

t;i’ Assemblies
'%' Drivers

< senices

Project Summary

Application Shortcut Folder
> 3 Program Files

> 3 Program Files 64
~ 7 Windows Volume
v Windows

System 16

System
System 64
Fonts
DPinst

Temporary

Desktop
Common Application Data

> B3 Start Menu
v 3 User Profile

Documents

Pictures

Favorites
ion Data
Local Application Data
Network Shertcuts
Recent ltems
Printer Shortcuts
Send To

Windows Libraries

Templates
Administrative Tools
v 23 Public
Public Documents

Root

P> Files And Folders Tools Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2% - u] X
View Settings Wizards Files, Folders and Shorteuts (7]
Add Tempaorary Files ~ Copy =
i DR 7K EVEN L o
[¥ Import Files ~ Cut
Add Add . . Delete Properties | Hash Ignore Refresh Goto MoveTo Mow _ Howto Visible
Folder Files = Add Deper Paste Files Attributes Component Component Feature T Videos members~
Wizard New Add Clipboard Options Adtions Feature
| 0 Find | ‘ Files, Folders and Shortcuts
Iders | Size Type
B G TR 2 I8 Target Computer 665K8 Application
Application Folder

1KE Setup Informa.

) Notifications

Next, navigate to the Custom Actions Page and add the Launch attached file predefined custom

action into the sequence, select the installation vbscript file that was previously created and
configure the Custom Action as such:

5

Advanced Techniques in MSI Packaging

Powered by AdvancedInstaller.com

148

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

See Simple View
slideshow
“EE‘ Translations

System Changes
Environment

@ Scheduled Tasks

qj Windows Firewall

:ﬁ Users and Groups

@; COM

Server

@ ooec

f@ SOL Databases

Custom Behavior

‘O Search

| Properties

Custom Actions

Table Editor

Project Summary

Ready

P o€ S A< Custom Actions Tools Firewall App - Firewall App.zip (English US) - Advanced Installer 20.2% -]
Project View Settings Wizards Custom Actions
i [5 T 2 Copy
y o >
B ¥ b o
5 3 o
New Custom Attached Installed Show Standard Sequence Move Delete How-to
i File File ion Paste Videos
Wizard Launch Clipboard
. Custom Actions
oo e

Add Custom Action | Existing Custom Actions

Launch Attached File

- 0

Launch attached file

Launch instaled file

Launch file from property

Launch EXE with working directory
Launch fle

NIET Trctallar Mlace 2rfine

@&

the target machine.

Launch & fi which i stored in the MST package, but wil not be installed on

Properties
Attached fle: C:\Users\User\Pesktoplinstalidriver.vbs
File type: Visual basic script (*.vbs) v
Function:
Action data:

[pigitally sign file at build tme

Instalation Sequence

Show: Al Install Uninstall

Wizard Dialogs Stage

Maintenance

& searches
@ Paths Resolution
& User Selection

Instal Execution Stage

& searches

& Paths Resolution
& Preparing

& Remove Resources
& Add Resources
{63 installdriver.vbs
& Finish Execution

Finish Dialogs Stage

Move

Execution Time
) Immediately
© When the system is being modified (deferred)
(O During installation rollback

(O After the system has been successfully modified (commit)

Execution Options

18 wait for custom action to finish before proceeding
{8 Fail installation if custom action returns an error
Action Text. .

Execution Stage Condition
8 nstall

Condition:

[Duninstall (Jfzintenance.

I8 Run under the LocalSystem account with full privileges (no impersonatior)

@

Show upgrade options

) Notifications

Repeat the same steps for the uninstall script and configure the custom action as follows:

O HE-X - € i = Custom Actions Taols Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2% — o X
Project View Settings Wizards Custom Actions [7]
5 e o :l [2 Copy x
) 4 (o E
] @ W 20 /7 [>]
New Custom Attached Installed ~ Show Standard Sequence Move Delete How-to
i File File ion Paste Videos
Wizard Launch Clipboard
- Custom Actions
O Find

See Simple View
Slideshow
A% Translations

System Changes

Environment

@ Scheduled Tasks
qj Windows Firewall
Iy

‘ﬁ Users and Groups

@; COM

Server

& ooec

%E} S0L Databases
Custom Behavior
’O Search

[V=| Propetties

Custom Actions

Table Editor

Project Summary

Ready

Add Custom Action

Existing Custam Actions

- 0

Launch Attached File

Launch attached file

Launch installed file

Launch file from property

Launch EXE with working directory
Launch fle

RIET Trctallar Mlace artinn

@&

the target machine.

Instalation Sequence

Launch & fie which i stored in the MST package, but wil not be installed on

Properties
Attached file: C:\Users\User\Desktop \uninstalidriver vbs
File type: Visual basic script (*.vbs) -
Function:
Action data:

[pigitally sign file at build tme

Show: Al Instal Uninstal

Wizard Dialogs Stage

Maintenance

@ searches
& Paths Resolution
& User Selection

Instal Execution Stage

@ searches

& Paths Resolution
& Preparing

& Remove Resources
@ Add Resources
@ uninstalldriver.vbs
@ installdriver vbs
& Finish Execution

Finish Dialogs Stage

Move

Execution Time
) Immediately
© When the system is being modified (deferred)
O During installation rallback
(O After the system has been successfully modified (commit)

Execution Options

18 Run under the LocalSystem account with full privileges (no impersonation)

18 Wait for custom action to finish before proceeding

{8 Fail installation if custom action returns an error
Action Text...

Execution Stage Condition

] nstall B uninstall [Msintenance

Condition:

®

Show upgrade options

D Notifications

Advanced Techniques in MSI Packaging

Powered by

AdvancedInstaller.com

149

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

And that is it, build your package and install it and the driver will appear as installed.

If we don't want to use the DPInst method and want to go with the PnPULtil one, the VBScript for
installation should look like this:

Option Explicit
On Error Resume Next

Dim strCmd,WshShell,strinstalldir,strcmd1, strcmd2

Set WshShell = CreateObject("WScript.Shell")

strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEROOT%")

stremd= "pnputil.exe /add-driver " & chr(34) & strinstalldir & "\DPInst\HP.inf" & chr(34)

WshShell.Run strCmd

Set WshShell = Nothing

This VBScript performs the following actions:

e Option Explicit: Enables explicit variable declaration, ensuring that all variables are
declared before use.

On Error Resume Next: Instructs the script to continue execution even if an error occurs.
Dim strCmd, WshShell, strinstalldir, strCmd1, strCmd2: Declares variables to hold the
commands, Windows Script Host Shell object, and the installation directory.

e Set WshShell = CreateObject("WScript.Shell"): Creates an instance of the Windows Script
Host Shell object.

e strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEROOT%"): Retrieves the path
of the Windows installation directory using the %SYSTEROOT% environment variable.

e strCmd = "pnputil.exe /add-driver " & chr(34) & strinstalldir & "\DPInst\HP.inf" & chr(34):
Constructs the command to be executed. It combines the pnputil.exe utility command
/add-driver with the path to the "HP.inf" file for driver installation. The chr(34) is used to
enclose the path in double quotes.

e WshShell.Run strCmd: Runs the command stored in strCmd using the Run method of the
Windows Script Host Shell object. This executes the pnputil.exe utility with the
/add-driver command and the specified driver inf file for installation.

e Set WshShell = Nothing: Releases the reference to the Windows Script Host Shell object.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 150

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The script to remove the driver with PnPUtil is:

Option Explicit
On Error Resume Next

Dim strCmd,WshShell,strinstalldir,strcmd1, strcmd2

Set WshShell = CreateObject("WScript.Shell")

strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEROOT%")

strcmd= "pnputil.exe /delete-driver " & chr(34) & strinstalldir & "\DPInst\HP.inf" & chr(34)

WshShell.Run strCmd

Set WshShell = Nothing

This VBScript performs the following actions:

e Option Explicit: Enables explicit variable declaration, ensuring that all variables are
declared before use.

On Error Resume Next: Instructs the script to continue execution even if an error occurs.
Dim strCmd, WshShell, strinstalldir, strCmd1, strCmd2: Declares variables to hold the
commands, Windows Script Host Shell object, and the installation directory.

e Set WshShell = CreateObject("WScript.Shell"): Creates an instance of the Windows Script
Host Shell object.

e strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEROOT%"): Retrieves the path
of the Windows installation directory using the %SYSTEROOT% environment variable.

e strCmd = "pnputil.exe /delete-driver " & chr(34) & strinstalldir & "\DPInst\HP.inf" &
chr(34): Constructs the command to be executed. It combines the pnputil.exe utility
command /delete-driver with the path to the "HP.inf" file for driver deletion. The chr(34) is
used to enclose the path in double quotes.

e WshShell.Run strCmd: Runs the command stored in strCmd using the Run method of the
Windows Script Host Shell object. This executes the pnputil.exe utility with the
/delete-driver command and the specified driver inf file for deletion.

e Set WshShell = Nothing: Releases the reference to the Windows Script Host Shell object.

Do the same steps as we did before to add the VBScript files in the custom actions, build the
installer and the driver should get installed.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 151

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Installing drivers with PowerShell

Let's assume that the driver .inf name is HP.inf. Also, let's assume that we are going to place the
DPInst.exe utility directly into the C:\Windows\DPInst folder and there we are going to place the
.inf file as well.

The script to install the file as we did with VBScript is:

SDPInstLoc = Senv:SystemRoot + "\DPInst\DPInst_x64.exe"

Scmd = "SDPInstLoc /F /LM /S"
Invoke-Expression Scmd

The script performs the following actions:

e SDPInstLoc = Senv:SystemRoot + "\DPInst\DPInst_x64.exe": Sets the variable
SDPInstLoc to the path of the DPInst_x64.exe file located in the %SystemRoot%\DPInst
directory. The Senv:SystemRoot environment variable represents the path to the
Windows installation directory.

e Scmd = "SDPInstLoc /F /LM /S": Constructs a command string that includes the value of
SDPInstLoc and additional command-line arguments. In this case, the command is
DPInst_x64.exe /F /LM /S. The /F switch specifies that existing driver packages should
be deleted, /LM specifies that the driver should be installed for all users on the local
machine, and /S enables silent installation without displaying any user interface.

e Invoke-Expression Scmd: Executes the command stored in the Scmd variable using the
Invoke-Expression cmdlet. This cmdlet interprets and runs the command as if it were
typed directly into the PowerShell console.

The script to uninstall the driver is:

SDPInstLoc = Senv:SystemRoot + "\DPInst\DPInst_x64.exe"
SINFLocation = Senv:SystemRoot + "\DPInst\HP.inf"

Scmd = "$SDPInstLoc /S /U SINFLocation"
Invoke-Expression Scmd

The script performs the following actions:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 152

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e SDPInstLoc = Senv:SystemRoot + "\DPInst\DPInst_x64.exe": Sets the variable
SDPInstLoc to the path of the DPInst_x64.exe file located in the %SystemRoot%\DPInst
directory. The Senv:SystemRoot environment variable represents the path to the
Windows installation directory.

e SINFLocation = Senv:SystemRoot + "\DPInst\HP.inf": Sets the variable SINFLocation to
the path of the HP.nf file located in the %SystemRoot%\DPInst directory.

e Scmd = "SDPInstLoc /S /U SINFLocation": Constructs a command string that includes
the values of $DPInstLoc and SINFLocation as well as additional command-line
arguments. In this case, the command is DPInst_x64.exe /S /U HP.inf. The /S switch
enables silent installation without displaying any user interface, and the /U switch
specifies the INF file to be used for uninstallation.

e Invoke-Expression Scmd: Executes the command stored in the Scmd variable using the
Invoke-Expression cmdlet. This cmdlet interprets and runs the command as if it were
typed directly into the PowerShell console.

Once we have the scripts done and the DPInst utility downloaded, open Advanced Installer and
first navigate to the Files and Folders Page. In here, create a new directory under Windows
Volume\Windows called DPInst and add the DPInst utility with the HP.inf file near it.

Next, navigate to the Custom Actions Page and add the Run PowerShell script file predefined

custom action into the sequence, select Attached Script and select the file that was previously
created and configure the Custom Action as such:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 153

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O HE-X® - € i Custom Actions Tools Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2.1% - o X
Project View Settings Wizards Custom Actions [7]
i o,

8 s B

Mew Custom Attached Installed
Action File

Environment

@ Scheduled Tasks

qj Windows Firewall

:ﬁ Users and Groups

@; COM

Server

@ ooec

f@ S0L Databases
Custom Behavior
‘O Search

[v=] Properties

Custom Actions

Table Editor

Project Summary

Ready

[2) Copy x
. ot o

Jo

Run PowerShell Script File

Show Standard Sequence Move Delete How-to
ile Action Share Paste Videos
Wizard Launch Clipboard
. Custom Actions
oo e
Add Custom Action | Existing Custom Actions
-
See Simple View 2 0 power x
[P] sideshow Run Powershel inline script
Run Powershell script fle & |

A% Translations Gl&

System Changes

Run & Windows PowerShel script fie ors the arget compuler.

[Parameter values:

(O Saript from disk
File path:
© Attached script

File source: C:\Wsers\UserDesktopinstalldriver ps1

Powershell Script Options

Instalation Sequence

Show: All Instal Uninstal Maintenance

Wizard Dialogs Stage

& searches
@ Paths Resolution
& User Selection

Instal Execution Stage

& searches

& Paths Resolution
& Preparing

& Remove Resources
& Add Resources
X PowerShelScriptFile
& Finish Execution

Finish Dialogs Stage

Move

Execution Time
O Immediately
1O When the system is being modfied (deferred)
() During installation rollback

(O After the system has been successfuly modified (commit)

Execution Options

18 Run under the LocalSystem account with full privileges (no impersonation)

Wait for custom action to finish before proceeding
18 Fail installation if custom action returns an error

Action Text...

Execution Stage Condition
8 nstall [uninstall [Maintenance
Condition:

®

Show upgrade options

) Notifications

Repeat the same process for the uninstall script and configure the Custom Action as follows:

D HBE-X¥ PP o€ p B Custom Actions Tools Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2.1% — O X
Project View Settings Wizards Custom Actions [7]

AR gl E&} %‘ [2 Copy x u

=N & S, L 2 cut
New Custom Attached Installed ~ Show Standard Sequence Move Delete How-to

Action File File ion Share Paste Videos

Wizard Launch Clipboard

- Custom Actions
O Find
Add Custom Action | Existing Custom Actions Run Powershell Seript File
-
See Simple View 2 0 power x
— [Parameter values:
Slideshow Run Powershel inling script

x Run PowerShell script file @& () Script from disk

“F| Translations

- File path:
System Changes

© Attached script
Environment
File source: Ci\UsersWUser\Desktop uninstalldriver ps1

@ Scheduled Tasks

qj Windows Firewall

:ﬁ Users and Groups

@; COM

Server

& ooec

%’Q SOL Databases
Custom Behavior

’O Search

V=| Properties

Custom Actions

Table Editor

Project Summary

Ready

Run & Windows PowerShel script fie ors the arget compuler.

Instalation Sequence

Show: Al Instal Uninstal

Wizard Dialogs Stage

Maintenance

@ searches
& Paths Resolution
& User Selection

Instal Execution Stage

@ searches

& Paths Resolution

& Preparing

& Remove Resources
@ Add Resources

EX PowerShellScriptFile_1
EX PowerShellScriptFile
& Finish Execution

Finish Dialogs Stage

Move

Powershell Script Options

Execution Time
O immediately
10 Wihen the system is being modified (deferred)
(O During installation rollback
() After the system has been successfully modified {commit)

Execution Options

I8 Run under the LocalSystem account with full privileges (no impersonatior)

Wait for custom action to finish before proceeding
18 Fail installation if custom action returns an error

Action Text...

Execution Stage Condition

[nstall B urinstall [JMaintenance,

Condition:

®

Show upgrade options

D Notifications

Advanced Techniques in MSI Packaging
Powered by AdvancedInstaller.com

154

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Next, build the package and during installation/uninstallation the PowerShell scripts will run and
install/uninstall the driver.

If we are going with the PnPUTtil route, the script to install is quite simple:

SDriverPath = Senv:windir + "\DPInst"

Get-Childltem SDriverPath -Recurse -Filter "*inf" | ForEach-Object { PNPUtil.exe /add-driver
S_.FullName /install }

The script performs the following actions:

e SDriverPath = Senv:windir + "\DPInst": Sets the variable SDriverPath to the path of the
DPInst directory located in the Windows installation directory (%windir%). The
Senv:windir environment variable represents the path to the Windows directory.

e Get-Childltem SDriverPath -Recurse -Filter "*inf": Retrieves all the files with the ".inf"
extension located in the $DriverPath directory and its subdirectories using the
Get-Childltem cmdlet. The -Recurse parameter ensures that files are searched
recursively.

e ForEach-Object { PNPULtil.exe /add-driver S_.FullName /install }: For each ".inf" file found
in the previous step, it executes the PNPUtil.exe utility to add and install the driver
specified by the $_ variable (represents the current file object). The /add-driver switch is
used to add the driver package, and the /install switch is used to install the driver.

The script to uninstall the driver with PnPULtil is:

SDriverPath = Senv:windir + "\DPInst\HP.inf"
SArguments = "pnputil /delete-driver SDriverPath"
Start-Process -FilePath PowerShell.exe -ArgumentList SArguments -Wait

Thescript performs the following actions:

e SDriverPath = Senv:windir + "\DPInst\HP.inf": Sets the variable SDriverPath to the path of
the "HPR.inf" file located in the DPInst directory within the Windows installation directory
(%windir%). The Senv:windir environment variable represents the path to the Windows
directory.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 155

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e SArguments = "pnputil /delete-driver SDriverPath": Sets the variable SArguments to the
command-line arguments that will be passed to the PowerShell process. In this case, it
constructs a command to delete the driver specified by the SDriverPath variable using

the pnputil utility.

e Start-Process -FilePath PowerShell.exe -ArgumentList SArguments -Wait: Starts a new
instance of the PowerShell process and passes the SArguments as command-line
arguments. The -Wait parameter ensures that the script waits for the PowerShell process
to complete before continuing.

Once we have the scripts we need to do the same steps as we did with the DPInst method and

then build and install the package.

Installing drivers with Advanced Installer

Advanced Installer makes it much easier to handle driver operations by providing a simple and
intuitive GUI for these actions.

Navigate to the Drivers page and click on New Driver. A window will open for you to select the

.inf file which must be present in the package.

QI HEE- % PP e > B

Froject View Settings wizards

g
=]
New Add Delete
Driver Driver

Wizard Add

©

See Simple View &

|q9] tues

w_‘!', Java Products

\{H Registry

D-_ll File Associations

r;, Assemblies

5 Drivers

‘»t> Senvices
Package Definition

@ Install Parameters

=
~— Organization
[-=E]

ﬁ Builds

o8 Analytics

E Deployment
Requirements

-
0= Prerequisites
’?» Launch Conditions

+
Tty Werge Modules

Project Summary

Ready

Drivers Tools

Driver Packages

Driver Packages

Drivers

Select Installed File

Folders

[Target Computer

Mame

amm

Application Folder
~ 7 Windows Volume

~ Windows

File name:
Files of type:

Feature fiter:

DPlInst

o X

Size Type Version
1KE Setup Informat...

[Add Driver] toolbar button or the “Add” context

f.

“HP.inf"

Inf Files (%.inf)

All Features

e

Cancel

@ 2002 - 2022 Caphyon Ltd. Trademarks belong to their respective owners. All rights reserved.

D Notifications

Advanced Installer parses the .INF file and detects what is needed and you have multiple

settings to choose from:

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

156

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

OIFS - EHE P ¢ >@s]

Projed view semngs wizaras
3 = X
N =

New Add Delete

Driver Driver
Wizard ~ Add

Drivers Tools

Driver Packages

Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2*

Driver Packages

= |

Drivers

Driver Settings

L

e Simple View

T Licensing
(& Muttiple Instances
Resources

E} Files and Folders

F Shortcuts

@ Tiles

-‘!‘P Java Products

_OE? Registry

D} File Associations

w
G Assemolies

(254
= Drivers
iy senices

Package Definition

ij Install Parameters

m .
~— Qrganization
[T

ﬁ Builds

M Analviics

Project Summary

Ready

And that is it, all you have to do is build the MSI and install the package. Simple right?

Install Unsigned Drivers

HP.inf

{8 Force the installation of 3 new PP function driver on a device

{8 Do not prompt the user to connect the device to the computer

(Do not create an Add or Remove Programs entry for the component

8 install unsigned driver packages and driver packages that have missing files

(8 On uninstall remove the binary files that were copied to the system when installed

O Notifications

There are cases when we try to install drivers on Windows and the following windows appears:

E Advanced Techniques in MSI Packaging

Powered by AdvancedInstaller.com

157

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

F =

'5.-;5.' Windows Security

62] Windows can't verify the publisher of this driver software
-

-} Don't install this driver software

You should check your manufacturer's website for updated driver software
for your device,

= Install this driver software anyway

Cnly install driver software cbtained from your manufacturer's website or
disc. Unsigned software from other sources may harm your computer or steal
information.

(w) See details

And we must click : "Install this driver software anyway".

This is happening because that particular driver is unsigned. In the IT Pros world we need to
make sure that these types of drivers are installed silently and no interaction to the user is
necessary. We can install the driver without any prompt in following way :

Tools that you need: (most are from the Windows Driver Kit — the latest version of Windows
Driver Kit W11 22H2):

Inf2Cat.exe (To generate the unsigned catalog file from our INF)
Makecert.exe (Used to create our certificate)

Signtool.Exe (Sign our catalog file with an Authenticode digital signature)
Certmgr.exe (Used to add and delete our certificate to the system root)

Let's have a look at each step that you must take to get your unsigned certificates installed
silently.

Create a digital certificate by using the MakeCert tool

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

158

https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/inf2cat
https://learn.microsoft.com/en-us/windows/win32/seccrypto/makecert
https://learn.microsoft.com/en-us/windows/win32/seccrypto/signtool
https://learn.microsoft.com/en-us/dotnet/framework/tools/certmgr-exe-certificate-manager-tool
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Open an x86/x64 Free Build Environment command prompt with administrator permissions, by
right-clicking x86 Free Build Environment on the Start menu, and then selecting Run as

administrator.

At the x86/x64 Free Build Environment command prompt, type the following command on a
single line (it appears here on multiple lines for clarity and to fit space limitations):

makecert -r -n "CN=Name"
-ss CertStore
-sr LocalMachine

Ex: makecert -r-n CN="TestCert" -ss Root -sr LocalMachine
The meaning of each parameter is as follows:
e -r

Specifies that the certificate is to be "self-signed,’ rather than signed by a CA. Also called a "root”
certificate.

e -n"CN=Name"

Specifies the name associated with this new certificate. It is recommended that you use a
certificate name that clearly identifies the certificate and its purpose.

e -ss CertStore
Specifies the name of the certificate store in which the new certificate is placed.
e -sr LocalMachine

Specifies that the certificate store created by the -ss option is in the per computer store, instead

of the default per user store.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 159

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

t -sr LocalMachine

@ certmgr - [Certificates - Current User\Trusted Root Certification Authorities\Certificat...

File Action View Help

HEl 4B XE 2| HE

==

[5H Certificates - Current User
| Personal

W

| Trusted Root Certification Au

| Certificates

| Enterprise Trust

| Intermediate Certification Au

| Active Directory User Object
| Trusted Publishers

| Untrusted Certificates

| Third-Party Root Certificatior
| Trusted People

| Client Authentication |ssuers

| Local MonRemovable Certific
| Smart Card Trusted Roots

<

>

lssued To

(= Microsoft ECC TS Root Certifica...

] Microsoft Root Authority

Sl Microsoft Root Certificate Auth...
Sl Microsoft Root Certificate Auth...
Sl Microsoft Root Certificate Auth...
5] Microsoft Time Stamp Root Cer...
(5] NO LIABILITY ACCEPTED, (c)97 ...

S5l SecureTrust CA

(S5l Starfield Class 2 Certification A...
(= Symantec Enterprise Mobile Ro...

: TestCert
[Zilthawte Primary Root CA
(=l Thawte Timestamping CA

(5] VeriSign Class 3 Public Primary ...
(=] VeriSign Universal Root Certific...

<

Issued By

Microsoft ECC TS Root Certificate ...
Microsoft Root Authority
Microsoft Root Certificate Authori...
Microsoft Root Certificate Authori...
Microsoft Root Certificate Authori...
Microsoft Time Stamp Root Certif...
MO LIABILITY ACCEPTED, (c)97 Ve...
SecureTrust CA

Starfield Class 2 Certification Auth...
Symantec Enterprise Mobile Root ...
TestCert

thawte Primary Root CA

Thawte Timestamping CA

VeriSign Class 3 Public Primary Ce...
VeriSign Universal Root Certificati...

>

Trusted Root Certification Authorities store contains 37 certificates.

The command returns the message "Succeeded" when the store and certificate are created.

Create a .cat (catalog) file for the driver

We notice that some drivers don't contain a cat file, so we'll need to generate one.

Open the .INF file in a text editor. Ensure that under the [version] section that you have an entry
specifying a .cat file. If it's not there, add the line

at the end of the section. For example:

[version]
Signature=xxxxxx
Provider=xxxxxx

CatalogFile=MyCatalogFile.cat

es in MSI Packaging
edInstaller.com

Advanced Techniqu
Powered by Advanc

160

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

"MyCatalogFile.cat" is the name of the cat file that we want to generate. Not having a line
specifying this will result in an "error 22.9.4 - Missing 32-bit catalog file entry" when we run
Inf2Cat.exe.

Command line:

Inf2Cat.exe /driver:"<Path to folder containing driver files

Ex : Inf2cat.exe /driver:[PathTolINFwithoutFile] /0s:10_x64,10_x86
The meaning of each parameter is as follows:
e /driver: c:\toaster\device

Specifies the location of the .inf file for the driver package. You must specify the complete folder
path. A'! character does not work here to represent the current folder.

e /os: 10_x86 or 10_x64

Identifies the 32-bit version of Windows 10 as the operating system. Run the command inf2cat
/? for a complete list of supported operating systems and their codes.

il -
Home Share View o

« A » ThisPC » Local Disk(C:) » driver ~ O Search driver

~
Name Date medified Type Size
3 Quick access

B Deskt =4 setupbd.cat 1/18/20 Security Catalog 2KB
eskto
@ P | setupbd.inf 5/15/20 Setup Information 3KB
Downloads
| Documents B¥ Administrater: Command Prompt - O X
&= Pictures L. . . . s ~ . ;
18\bin\18.8.226 Inf2Cat.exe” /driver:C:\driver /os:I
Adobe
alex
driver
temp
@ OneDrive
& This PC
¥ Network

2 items

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 161

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/inf2cat
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Sign the catalog file using SignTool

signtool sign /v /sm /s Root /n "TestCert" /t http://timestamp.digicert.com path\example.cat

The meaning of each parameter is as follows:
e /sm

Specifies that a machine store, instead of a user store, is used
e /s CertStore

Specifies the name of the certificate store in which SignTool searches for the certificate
specified by the parameter /n. In our case we look in the Root

e /n“Name”

Specifies the name of the certificate to be used to sign the package. You must include enough
of the name to allow SignTool to distinguish it from others in the store. If this name includes
spaces, then you must surround the name with double quotes.

e /tpath to time stamping service

Specifies the path to a time stamping service at an approved certification authority. If you
purchase your certificate from a commercial vendor, they should provide you with the
appropriate path to their service.

e example.cat
Specifies the path and file name of the catalog file to be signed.

Signtool indicates completion with the following message:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 162

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

BN Administrator: Command Prompt = & b

imestamp.digicert

onal Store
d and timestamped: C:\driver\ at

Successfully signed and timestamped: C:\toaster\device\example.cat

Export the certificate from certstore manually
Run an administrator command: certmgr.exe

Export the certificate manually:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 163

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

File Action View Help

e rE FEIXER HE

certrngr - [Certificates - Current User\Trusted Root Certification Authorities\ Certificat... — O >

_abl Certificates - Current User
| Personal

s || Trusted Root Certification Auw

| Certificates

~| Enterprise Trust
| Intermediate Certification Au
| Active Directory User Object
| Trusted Publishers
| Untrusted Certificates
| Third-Party Root Certificatior
| Trusted People
| Client Authentication Issuers
| Lecal MonRemovable Certific

Issued To

= Microsoft ECC TS Root Certifica..,

= Microsoft Root Authaority

Sl Microsoft Root Certificate Auth...
Sl Microsoft Root Certificate Auth...
= Microsoft Root Certificate Auth...
= Microsoft Time Stamp Root Cer...
MO LIABILITY ACCEPTED, (c)87 ...

= SecureTrust CA

= Starfield Class 2 Certification A...
=] Symantec Enterprise Mobile Ro...

Issued By

Microsoft ECC T5 Root Certificate ...
Microsoft Root Authority
Microsoft Root Certificate Authori...
Microsoft Root Certificate Authori...
Microsoft Root Certificate Authori...
Microsoft Time Stamp Root Certif...
MO LIABILITY ACCEPTED, ()47 Ve...
SecureTrust CA

Starfield Class 2 Certification Auth...
Syrnantec Enterprise Mobile Root ..,

| Smart Card Trusted Roots S/ thawte Prir Open e Primary Root CA
gl Thawte Tir All Tasks » Open
=] VeriSign ClI Cut Eroort ary Ce..
VeriSign Ur . port... ificati...
g
€ >« Copy >
Delete
Contains actions that can be performed on the item.

Install the certificate to Root and TrustedPublisher

Command line:

certutil.exe -addstore "Root" [PathToCertificatewithFile]

certutil.exe -addstore "TrustedPublisher" [PathToCertificatewithFile]

Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 164

J

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

B Administrator: Command Prompt = O %

xMarin\Desktop\testcert.cer”

er
déele20f76

Certificate "TestCert" a
CertUtil: -addstore co

c:\driver:»

for remove :

certutil.exe -delstore "Root" [PathToCertificatewithFile]

certutil.exe -delstore "TrustedPublisher" [PathToCertificatewithFile]

Now we can install the driver without the prompt.

Build the MSI

Now that we have understood how you sign a driver we also need to learn how you add the
actions in the MSI. Basically all you need are two steps:

1. Install the certificate

2. Install the driver
For the second step we already had a look a_chapter earlier on how to achieve that, so basically
all we have to do is create a script that performs the certutil commands previously mentioned.
Let's assume that the driver .inf name is HP.inf and let's assume that we are going to place the
certificate directly into the C:\Windows\DPInst.

For VBScript:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 165

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Option Explicit
On Error Resume Next

Dim strCmd,WshShell,strinstalldir

Set WshShell = CreateObject("WScript.Shell")
strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEMROOT%")

strCmd = "certutil.exe -addstore " & chr(34) & "Root" & chr(34) & " " & chr(34) & strinstalldir &
"\DPInst\TestCer.cer" & chr(34)

WshShell.Run strCmd

The script performs the following actions:

D

Option Explicit: This statement enforces variable declaration in the script, ensuring that
all variables are explicitly declared before they are used.

On Error Resume Next: This statement allows the script to continue running even if an
error occurs, bypassing the error and continuing with the next line of code.

Dim strCmd, WshShell, strinstalldir: Declares three variables: strCmd to hold the
command to be executed, WshShell to access the Windows Script Host Shell object, and
strinstalldir to store the expanded value of the %SYSTEMROOT% environment variable.
Set WshShell = CreateObject("WScript.Shell"): Creates an instance of the Windows Script
Host Shell object, which allows the script to run shell commands and interact with the
Windows environment.

strinstalldir = WshShell.ExpandEnvironmentStrings("%SYSTEMROOT%"): Retrieves the
value of the %SYSTEMROOT% environment variable using the
ExpandEnvironmentStrings method of the WshShell object. The %SYSTEMROOT%
variable represents the path to the Windows installation directory.

strCmd = "certutil.exe -addstore " & chr(34) & "Root" & chr(34) & " " & chr(34) &
strinstalldir & "\DPInst\TestCer.cer" & chr(34): Constructs the command to be executed.
It uses the certutil.exe utility to add a certificate (TestCer.cer) to the "Root" certificate
store. The path to the certificate file is obtained by combining strinstalldir (Windows
installation directory) with the relative path \DPInst\TestCer.cer. The chr(34) is used to
insert double quotes into the command string.

WshShell.Run strCmd: Executes the command stored in the strCmd variable using the
Run method of the WshShell object. This runs the command in a separate process.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 166

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

In summary, the script uses VBScript to execute the certutil.exe command and add a certificate
(TestCer.cer) to the "Root" certificate store. The script retrieves the Windows installation
directory, constructs the command with the appropriate paths and options, and then runs it
using the WshShell object.

Once the script is created, navigate to the Custom Actions Page and add the Launch attached
file predefined custom action into the sequence, select the installation vbscript file that was
previously created and configure the Custom Action as such:

O HE- e > @< Custom Actions Tools Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2.1% - u] *
“ Project View Settings Wizards Custom Actions (7]
afr 5 <> o . Co
S & g 5 @b e Bor X
¥ 8 B @ 90 o
HNew Custom Attached Installed Show Standard Sequence Move . Delete How-to
Action File File Action Share Faste Videos
Wizard Launch Clipboard
Custom Actions
o
Add Custom Action | Existing Custam Actions Launch Attached File
See Simple View & o
~ Properties
Launch attached fi R &
Resources Aunch attached fle 2L A
= Launch installed file Attached file: C:\Users\User \Desktop'addcertificate. vbs
== Files and Folders
=) Launch file fram property File type: Visual basic script (.vbs) -
A snorteuts Launch EXE with working directory o
unction:
§ Launch file
ﬂl Tiles Action data:
n the MSI package, but wil not be installed on y
b Java Products (D) Digitally sign file at buid tme
B Registy Installaton Sequence
. Execution Time ®
D-_ll File Associations Show: All Instal Uninstal Maintenance O tmmediately
P:ﬂj Assemblies Wizard Diglogs Stage 1 When the system is being modified (deferred)
& Searches (O buring installation rollbadk
- Di - > q
=" Drivers o -
= & Paths Resolution () After the system has been successfully modified (commit)
. senices & User Selection
Package Definition Install Execution Stage Execution Options ©
. 18 Run under the LocalSystem account with full privileges (no impersonation)
@ Install Parameters {5 Searches
. 18 wait for custom action to finish before proceeding
B & Paths Resolution
—— Organization - 18 Fai installation if custom action returns an error
=) 5 Preparing
=) o Action Text. ..
[y Builds % Remove Resources
mm . & Add Resources
g Araiies (G addcertificate.vbs Move y i
A Lo - Execution Stage Condition @
I ; Deployment @ installcriver vbs — —
o B nstall [Duninstal [CImaintenance Show upgrads options
& Finish Execution
Requirements Conditions
- Finish Dialogs Stage
ject S Y
Ready) Notifications

Make sure that the script which installs the certificate is placed before the script which
installs the driver under the “Install Execution Stage” section.

With PowerShell it's even easier because we can use the Import-Certificate cmdlet:

SCerLocation = Senv:SystemRoot + "\DPInst\TestCer.cer"

Import-Certificate -FilePath SCerLocation -CertStoreLocation Cert:\LocalMachine\Root

Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 167

D

https://learn.microsoft.com/en-us/powershell/module/pki/import-certificate?source=recommendations&view=windowsserver2022-ps
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Import-Certificate -FilePath SCerLocation -CertStoreLocation
Cert:\LocalMachine\TrustedPublisher

Once we have the script ready, navigate to the Custom Actions Page and add the Run
PowerShell script file predefined custom action into the sequence, select Attached Script and
select the file that was previously created and configure the Custom Action as such:

D HE- P € i = 1 Custom Actions Tools Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2.17 - [m] X

“ Project View Settings Wizards Custom Actions [7]

Wizard Launch

o
See Simple View

Resources

E—"‘- Files and Folders

F Shortcuts

Tiles

b Java Products
2

‘LH Registry

D-_ll File Associations

P:;J Assemblies

fae
= Drivers

b Senvices
Package Definition

@ Install Parameters
= -
= Organization
ama

o
[y Builds

E Analytics

m Deployment
Requirements

Project Summary

Ready

Mew Custom Attached Installed Show Standard Sequence Move
Action File File

G ir X o

Delete How-to
Videos

Clipboard
Custom Actions

Add Custom Action | Existing Custom Actions

O powe x

Run PowerShel inline script

Run Powershell script file & &

Run & Windows Po

Installation Sequence

Show: All Instal Uninstal Maintenance
Wizard Dialogs Stage

@ Searches
G Paths Resolution

& User selection
Instal Execution Stage

& Searches

1% Paths Resolution

& Preparing

& Remove Resources

& Add Resources

E¥ PowershelScriptFile Mave
G installdriver.vbs

& Finish Execution

Finish Dialogs Stage

Run PowerShell Script File

[Parameter values:

O seript from disk

© Attached script

File source: C:Wsers\ser\Desktopinstallcertificate. ps1

PowerShell Sript Options

Execution Time
O Immediately
1 When the system is being modified (deferred)
() During installation rollback

() After the system has been successfully modified (commit)

Execution Options
18 Run under the LocalSystem account with full privileges (no impersonation)
Wait for custom action to finish before proceeding
8 Fail installation if custom action returns an error

Action Text...

Execution Stage Condition
8 Install (CJuninstall [D¥aintenance

Condition:

Show upgrade options

®

D Notifications

Next, build the package and during installation/uninstallation the PowerShell scripts will run and
install/uninstall the driver without asking if we want to install an unsigned driver.

Installing unsigned drivers with Advanced Installer

As you can see, handling unsigned certificates is not an easy task and it's definitely time
consuming. Advanced Installer makes it easier to install unsigned drivers with just a click of a
button..and yes that is not a figure of speech.

Navigate to the Drivers page and click on New Driver. A window will open for you to select the
.inf file which must be present in the package.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

168

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O ABE-SEE

P o« [i:

View Settings wizards

Drivers Tools

Driver Packages

Firewall App - Firewall App.aip (English US

- Advanced Installer 20.2

AW e x
RN =
New Add Delete
Driver Driver
Wizard Add
Driver Packages
O Find

|q9] tues

-

bl

Ready

See Simple View

0= Prerequisites
g Launch Conditions

¥ lerge Modules

Project Summary

Drivers

Select Installed File

O | user cuiDe

&; Java Products &l &
{@ Registry Folders Name = Size Type Version
[Target Computer I55f P | 1KE Setup Informat...
D-_Ll File Associations = Application Folder
B assembli ~ 7 Windows Volume
g Assemblies ~ 7 Windows
5 Drivers = DU
4y senices
Package Definition
ﬁ Install Parameters
L]
= Organization
)
=
% Builds
E Anaiytics File name: He.inf*
| 71 Deployment Fies of type: InfFiles (%inf) -
Feature fiter: Al Features ~ Cancel
Requirements

ADVANCEDINSTALLER.COM

[Add Driver] toolbar button or the “Add” context

@ 2002 - 2022 Caphyon Ltd. Trademarks belong to their respective owners. All rights reserved.

D Notifications

Next, all you have to do is just select “Install unsigned driver packages and driver packages that
have missing files” and Advanced Installer does everything for you!

5

Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com

169

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Q HEE- P € > @< B s Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2.1% - o ®
“ Project View Settings Wizards Driver Packages [7]

% 3 K

New Add Delete
Driver Driver

Wizard ~ Add
Driver Packages

Drivers Driver Settings

o
See Simple View 2 HPinf

Resources

B Force the installation of & new PP function driver on a device

(CIDa not prompt the user to connect the device to the computer

E Files and Folders [_1Do not create an Add or Remove Programs entry for the component

F Shortcuts I 8 Instal unsigned driver packages and driver packages that have missing fles I
. (C1on uninstal remove the binary files that were copied to the system when installed

ﬁl lles

b Java Products

B
o Registry

[T} File Associations

F:,'” Assemblies

=
= Drivers

gl Senices
Package Definition

@ Install Parameters

m -
~— Organization
ama

ﬁ Builds

E Analytics

I A Deployment
Requirements
Project Summary

Ready) Notifications

And that is it! Next, just build and install the package and you should have a clean installation
without any warning messages from the OS.

DLL/OCX register/unregister

Object Linking and Embedding (OLE) is a proprietary Microsoft technology that allows
developers to embed and link to other objects. With OLE Control Extension (OCX), you can
develop and use custom user interface elements. You can also achieve OLE controls via
Dynamic-Link Library(.dll) files.

However, to make sure the data transfer between applications work , these OLE controls must
be registered on the system. How can we do that? That's what we will show you in this article.

What is the Regsvr32 tool?

Regsvr32 is a command-line utility that allows registering and unregistering OLE controls such
as DLLs and ActiveX controls in the Windows Registry. Regsvr32 can be found in:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 170

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e For 64-bit version: %systemroot%\System32\regsvr32.exe
e For 32-bit version: %systemroot%\SysWoW64\regsvr32.exe

The syntax of the Regsvr32 is actually quite simple:
Regsvr32 [/u] [/n] [/i[:cmdline]] <dliname>

/u - Unregister control

/i - Call Dllinstall passing it an optional [cmdline]; when it is used with /u, it calls dll uninstall
/n - do not call DIIRegisterServer; this option must be used with /i

/s — Silent

/e - Suppress only the GUI success message but shows the GUI error message

Regsvr32 must always be used from an elevated command prompt.

For example, to register a DLL/OCX, you can use:

Regsvr32.exe PATHTODLL\name.DLL

To unregister a DLL/OCX, you can use:

Regsvr32.exe /U PATHTODLL\name.DLL

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

171

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

sxml3.dll”

RegSvr32

DIIRegisterServer in C\Windows\System3 2 msxmi3. dll
succeeded,

How to Register DLL/OCX with VBscript?

Now that we know about the Regsvr32 utility, we can build the following scenario. Let's assume
that we have a DLL in our project which will be installed in %systemroot%\DLL. So, we can
create the following registration script:

Option Explicit
On Error Resume Next

Dim strCmd,WshShell,strInstalldir
Set WshShell = CreateObject ("WScript.Shell")
strSysRoot = WshShell.ExpandEnvironmentStrings("%SYSTEMROOTS")

strInstalldir = strSysRoot & "\DLL"

strCmd = "regsvr32.exe " & chr(34) & strInstalldir &
"\libifcoremd.dll" & chr(34)& » /s”

WshShell.Run strCmd

The script performs the following actions:

e Option Explicit: This statement enforces variable declaration in the script, ensuring that

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 172

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

all variables are explicitly declared before they are used.

e On Error Resume Next: This statement allows the script to continue running even if an
error occurs, bypassing the error and continuing with the next line of code.

e Dim strCmd, WshShell, strinstalldir: Declares three variables: strCmd to hold the
command to be executed, WshShell to access the Windows Script Host Shell object,
and strinstalldir to store the path to the DLL file.

e Set WshShell = CreateObject("WScript.Shell"): Creates an instance of the Windows
Script Host Shell object, which allows the script to run shell commands and interact with
the Windows environment.

o strSysRoot = WshShell.ExpandEnvironmentStrings("%SYSTEMROOT%"): Retrieves the
value of the %SYSTEMROOT% environment variable using the
ExpandEnvironmentStrings method of the WshShell object. The %SYSTEMROOT%
variable represents the path to the Windows installation directory.

e strinstalldir = strSysRoot & "\DLL": Constructs the path to the DLL file by appending the
"\DLL" folder to the strSysRoot variable. This assumes that the DLL file is located in the
"DLL" folder within the Windows installation directory.

e strCmd = "regsvr32.exe " & chr(34) & strinstalldir & "\libifcoremd.dll" & chr(34) & " /s™
Constructs the command to be executed. It uses the regsvr32.exe utility to register a
DLL file (libifcoremd.dll). The path to the DLL file is obtained by combining strinstalldir
with the relative path \libifcoremd.dll. The chr(34) is used to insert double quotes into the
command string, and /s is a parameter to silently register the DLL without displaying any
user interface.

e WshShell.Run strCmd: Executes the command stored in the strCmd variable using the
Run method of the WshShell object. This runs the command in a separate process.

To unregister the DLL, we can use the following script:

Option Explicit
On Error Resume Next

Dim strCmd,WshShell,strInstalldir
Set WshShell = CreateObject ("WScript.Shell")
strSysRoot = WshShell.ExpandEnvironmentStrings ("$SYSTEMROOTS")

strInstalldir = strSysRoot & "\DLL"

strCmd = "regsvr32.exe /U " & chr(34) & strInstalldir &
"\libifcoremd.dll"™ & chr(34)& ™ /s”

WshShell.Run strCmd

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 173

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Now that the scripts are created, we need to open Advanced Installer and navigate to

the Custom Actions page.

e There, search for the Launch attached file predefined custom action and add it into the

sequence.

e Select your previously created registration script and configure the custom action as

follows:

TR 8=

9

P o<

View

Custom Actions Tools

Froject Settings Wizards Custom Actions

ady a5 D Xy ;JF P [z Copy x
R = ey (o5 ble >
25, 5] o “up wl oo ﬂ
New Custom Attached Installed ~ Show Standard Sequence Move Delete How-to
Action File File Action Share Paste Videos
Wizard Launch Clipboard
Custom Actions
o
Add Custom Action | Existing Custom Actions
See Simple View 2)

Slideshow
E‘ Translations
System Changes

Environment
@ Scheduled Tasks

m Windows Firewall

Launch attached file
Launch installed file

Launch file from property

Launch EXE with working directory
Launch fle

in the MSI package, but wil

the targe!

Instalation Sequence

o)
[+ Users and Groups

E;_]'? COM

Show: Al Instal Uninstal Maintenance
Wizard Dialogs Stage

% searches

& Paths Resolution

& User Selection

Instal Execution Stage

g& SQL Databases & Searches

Custom Behavior & Paths Resolution
& Preparing
O Search -
M {5 Remove Resources

’T’;l Propetties & Add Resources
E Custom Actions

[Tasie Editor

Project Summary

(@ registerdl.vbs

& Finish Execution

Finish Dialogs Stage

Ready

ot be instalied on

Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2.1%

Launch Attached File

e | Properties
Attached file: C:\Users\User\Desktop\registerdi.vbs
File type: Visual basic script (*.vbs) -
Function:
Action data:

[pigitally sign file at build tme

Execution Time
) Immediately
© When the system is being modified (deferred)
O During installation rallback
(O After the system has been successfully modified (commit)

Execution Options
18 Run under the LocalSystem account with full privileges (no impersonation)
18 Wait for custom action to finish before proceeding
{8 Fail installation if custom action returns an error

Action Text...

ko Execution Stage Condition
8 nstall [urninstall [Maintenance
Condition:

®

Show upgrade options

) Notifications

We also want to unregister the DLL during uninstallation, so let's create another custom action
the same way as we did previously. Except this time, select the unregister script and configure

the Custom Action as seen below:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

J

174

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O HE-% - €SB Custom Actions Toals Firewall App - Firewall App.aip (English US) - Advanced Installer 202.1
“ Project View Settings Wizards Custom Actions [7]
X a5 <> Py - Col
o @ [L e 51‘, 3¢ 2 Copy x
= o L& e H — oout o
HNew Custom Attached Installed ~ Show Standard Sequence Move . Delete How-to
Action File ile Action Videos
Wizard Launch Clipboard
Custom Actions
o)
Add Custom Action | Existing Custom Actions Launch Aftached File
See Simple View b4 o
Siideshow Launch sttached fil @ & Properties
— 1
E‘ Launch installed file Attached file: C:\Users\User\Desktopunregisterdil. vbs
“E| Translations
Launch file from property File type: Visual basic script {%.vbs) -
System Changes Launch EXE with working directory
Function:
Environment Launch fie)
- n I Action data:
i the M5T package, but willnot be rstaled on =
(D) senequieg Tasks :) Dtaly sgn fe atbuld sme
v
(D Windows Firswall Installation Sequence . .
e Execution Time @
&) Users and Groups Show: ANl Instal Uninstal Maintenance O tmmedately
ES com Wizard Dialogs Stage © When the system s being madified (deferred)
Server & searches (O During instaliation rallback
(G Paths Resolution (O After the system has been successfully modified (commit)
& User Selection
Instal Execution Stage Execution Options O]
= Run under the LocalSystem account with full privileges (no impersonatior]
=3 SOLDatabases & searches e 4 privileges o imp;)
& path ' 18 wait for custom action to finish before proceeding
% Paths Resolution
Custom Behavior - 8@ Fail installation if cistom action returns an error
o & Preparing ton et
- Action Text...
»7 Search 5 urregisterdlybs Move
[V=] Propetties & Remove Resources
r] Custom Adions 3 Add Resources Execution Stage Condition ®
Lo h @ registerdl.vbs _ J—
e [nstall B urinstall [JMaintenance, Show upgrade options
[Tate Editor & Finish Execution
Condition:
e Sy Finish Dialogs Stage - .
Ready) Notifications

And that is it, all you need to do is Build the MSI and install it. The DLL will be registered.

How to Register DLL/OCX with PowerShell?

Using the same logic as above, we can construct the following script to register a DLL with
PowerShell:

$Arguments = "C:\Windows\DLL\libifcoremd.d1l1l", "/s"

Start-Process -FilePath 'regsvr32.exe' -Args S$SArguments -Wait

-NoNewWindow —-PassThru

The script performs the following actions:

e $Arguments: Declares a variable to hold the arguments for the regsvr32.exe command
and assigns the arguments to be passed to the regsvr32.exe command. The first
argument is the path to the DLL file (C:\Windows\DLL\libifcoremd.dll), and the second
argument (/s) is a parameter to silently register the DLL without displaying any user

interface.
e Start-Process -FilePath 'regsvr32.exe' -Args $Arguments -Wait -NoNewWindow

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

175

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

-PassThru: Executes the regsvr32.exe command using the Start-Process cmdlet. The
-FilePath parameter specifies the path to the executable (regsvr32.exe). The -Args
parameter specifies the arguments to be passed to the executable, which are stored in
the $Arguments variable. The -Wait parameter ensures that the script waits for the
command to complete before continuing. The -NoNewWindow parameter prevents the
command from opening a new window. The -PassThru parameter returns an object
representing the newly created process, allowing for further interaction if needed.

To unregister the DLL, we can use the following script:

SArguments = “/u”,"C:\Windows\DLL\libifcoremd.d1l1l", "/s"

Start-Process -FilePath 'regsvr32.exe' -Args S$Arguments -Wait
-NoNewWindow —-PassThru

When the scripts are created, we navigate to the Custom Actions page.
Search for the Run PowerShell script file predefined Custom Action and add it in the
sequence.

e Once we select the registration PowerShell script, we can proceed to configure the
Custom Actions as follows:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 176

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O HE-X TR R : Custom Actions Tools Firewall App - Firewall App.zip (English US) - Advanced Installer 20.2.1% -] X
Project View Settings Wizards Custom Actions [7]
{6y - [2 Copy x
4)
5 I Yoot o
New Custom Attached Installed ~ Show Standard Sequence Move Delete How-to
Action File ile Action Share Paste Videos
Wizard Launch Clipboard
. Custom Actions
oo e
Add Custom Action | Existing Custom Actions Run PowerShell Script File
-
See Simple View 2 0 power x
[Parameter values:
[P] sideshow Run Powershel inline script
A Run Powershel script fle @& (O 5eript from disk
| Translations
- File path:
System Changes
© Attached script
Environment File source: C:'Users\User\Desktopyegisterdl.ps 1

@ Scheduled Tasks

qj Windows Firewall

:ﬁ Users and Groups

@; COM

Server

@ ooec

f@ S0L Databases
Custom Behavior
‘O Search

[v=] Properties

Custom Actions

Table Editor

Project Summary

Ready

Run & Windows PowerShel script fie ors the arget compuler.

Powershell Script Options

Instalation Sequence

Show: All Instal Uninstal Maintenance

Wizard Dialogs Stage

& searches
@ Paths Resolution
& User Selection

Instal Execution Stage

& searches

& Paths Resolution
& Preparing

& Remove Resources
& Add Resources

X PowerShelScriptFile
& Finish Execution

Finish Dialogs Stage

Move

Execution Time
O Immediately
1O When the system is being modfied (deferred)
() During installation rollback

(O After the system has been successfuly modified (commit)

Execution Options

18 Run under the LocalSystem account with full privileges (no impersonation)

Wait for custom action to finish before proceeding
18 Fail installation if custom action returns an error

Action Text...

Execution Stage Condition

8 nstall [uninstall

Candition:

®

Show upgrade options

) Notifications

For the unregister action, we follow the same steps as above and configure the Custom Actions:

D HBE-¥ R IR Custom Actions Tools Firewall App - Firewall App.aip (English US) - Advanced Installer 20.2.1% O X
Project View Settings Wizards Custom Actions (2]
& o o [Copy x
J o) b
& & B & oo 0 o
HNew Custom Attached Installed Show Standard Sequence Move Delete How-to
Action File File Action Share Paste Videos
‘Wizard Launch Clipboard
Custom Actions
o
Add Custom Action | Existing Custom Actions Run PowerShell Script File
See Simple View &

Slideshow
Al Translations

System Changes

Environment
G—) Scheduled Tasks
qj Windows Firewall

:‘.‘-‘ Users and Groups

E5 cou

g& SQL Databases
Custom Behavior
‘O Search

[V=| Properties

Custom Actions

Table Editor

Project Summary

Ready

O power

Run Powershelliniine script

Run PowerShel script fie

Run & Windows PowerShell script fie on the larget compuler.

Instalation Sequence

Show: All Instal Uninstal Maintenance

Wizard Dialogs Stage
& searches
& Paths Resolution
& User Selection

Instal Execution Stage

& searches

& Paths Resolution

& Ppreparing

X PowerShelScriptFile_1
% Remove Resources
& Add Resources

EX PowershelscriptFie

Finish Execution

Finish Dialogs Stage

Move

[Parameter values:

() Script from disk
File path:
© Attached script

File source: C:\Users\User\Desktop\unregisterdll.ps 1

PowerShell Sript Options

Execution Time
) Immediately
1 When the system is being modified (deferred)
O During installation rollback
(O) After the system has been successfully modified {commit)

Execution Options
18 Run under the LocalSystem account with full privileges (no impersonation)

Wait for custom action to finish before proceeding

18 Fal installation if custom action returns an error

Action Text..

Execution Stage Condition

[Dinstall @ uninstal [O¥aintenance

Condition:

©

Show upgrade options

) Notifications

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

177

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

And you're done, now you can Build the MSI and install it. The DLL will be registered.

How to Register DLL/OCX with Advanced Installer?

Advanced Installer makes it much easier to handle OLE control registration by providing a
Regqistration Tab GUI.

Accessing the GUI is quite easy with these steps:
1. First navigate to the Eiles and Folders page
2. Add the DLL/OCX files.

3. Once the files are added, right-click on the DLL/OCX and select Properties.
4. Then, navigate to the Registration Tab.

Edit File >

“ Properties ’.ZI'_? Operations || Version ﬁ;‘fRegistraﬁnn = Permissions

File Registration
B tuto register file (DLL, OCX, etc);

0 self register native library
(") Extract registration info from native library

(_)Register .Met assembly for COM Interoperability

As you may notice, there are three methods for registering files, two for native libraries and one
for NET assemblies.

e Self-register native library

This file is marked for self-registration, however, the self-registration method for registering

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

178

https://www.advancedinstaller.com/user-guide/registration-dialog.html
https://www.advancedinstaller.com/user-guide/files-folders.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

components has many drawbacks (like not being able to roll back the changes if something fails
later in the install) and it is against Microsoft guidelines.

e Extract registration info from the native library

All the necessary registry entries and keys are installed separately. You can see them in the
Registry and COM pages. This is the preferred way to register a file.

e Register .NET assembly for COM interoperability

It creates the required registry entries so that your assembly is operable through COM. You can
see those registry entries in the Registry page.

Write line in hosts file

On the Windows operating system, the hosts file is a plain text file that maps hostnames to IP
addresses. It functions as a local DNS (Domain Name System) resolver, allowing you to specify
the IP address associated with a specific hostname.

The hosts file is located at %SystemRoot%\System32\drivers\etc\hosts, where %SystemRoot%
represents the Windows installation directory (e.g., C:\Windows). The file has no file extension
by default and is just titled "hosts."

Each line in the hosts file begins with an IP address and ends with one or more hostnames,
separated by spaces or tabs. As an example:

127.0.0.1 localhost

The IP address 127.0.0.1 is associated with the hostname localhost in this example. In a web
browser, typing localhost will resolve to the specified IP address.

To add custom mappings between hostnames and IP addresses, manually edit the hosts file.
This can be useful for a variety of purposes, including redirecting a domain name to a different
IP address for testing or blocking access to specific websites by redirecting them to a
non-existent or local IP address.

Please keep in mind that editing the hosts file usually necessitates administrative privileges. As

a result, you may need to use an administrator account to run a text editor or any program that
modifies the hosts file.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 179

https://www.advancedinstaller.com/user-guide/registry.html
https://www.advancedinstaller.com/user-guide/com.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

There might be cases where the modification of the hosts file is required directly from the MSI
package, and the only way to do this is only via Custom Actions.

Write in hosts file with VBScript

If you want to use VBScript to write in the hosts file, this is quite easy to accomplish.

Const ForReading = 1
Const ForWriting = 2
Const HostsFilePath = "C:\Windows\System32\drivers\etc\hosts"

Dim objFSO, objFile
Dim strIPAddress, strHostname, strNewEntry
' Prompt user for the IP address and hostname
strIPAddress = “127.0.0.1"
strHostname = “example.com”
' Create the new hosts file entry
strNewEntry = strIPAddress & vbTab & strHostname
' Open the hosts file for appending
Set objFSO = CreateObject ("Scripting.FileSystemObject")
Set objFile = o0bjFSO.OpenTextFile (HostsFilePath, ForAppending,
True)
' Check if the entry already exists in the hosts file
Do Until objFile.AtEndOfStream
If LCase(objFile.ReadLine) = LCase (strNewEntry) Then
MsgBox "The entry already exists in the hosts file."
objFile.Close
WScript.Quit
End If
Loop
' Close the file and reopen it for writing
objFile.Close
Set objFile = 0bjFSO.OpenTextFile (HostsFilePath, ForAppending,

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 180

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

True)

' Write the new entry to the hosts file
objFile.WritelLine (strNewEntry)
objFile.Close

The above VBScript performs the following actions:

e It defines constants for file reading (ForReading) and file writing (ForWriting) modes, and
specifies the path to the hosts file (HostsFilePath), which is typically located at
"C:\Windows\System32\drivers\etc\hosts".

e [t declares variables to store the IP address, hostname, and the new entry that will be
added to the hosts file.

e The IP address is set to "127.0.0.1" (loopback address) and the hostname is set to
"example.com".

e It creates a string (strNewEntry) by combining the IP address and hostname, separated
by a tab character.

e It uses the FileSystemObject to access the hosts file and open it in appending mode
(ForAppending). If the hosts file doesn't exist, it will be created.

e Itreads each line of the hosts file to check if the new entry already exists. If a matching
entry is found, a message box is displayed, and the script terminates.

e If the entry is not found, the file is closed and reopened in appending mode to write the
new entry using the WriteLine method.

e Once the new entry is written, the file is closed again.

Write in hosts file with PowerShell

If you want to use PowerShell to write in the hosts file, this is also quite easy to accomplish.

ShostsFilePath = "S$env:SystemRoot\System32\drivers\etc\hosts"
Specify the hostname and IP address
Shostname = "example.com"

SipAddress = "127.0.0.1"

Check if the hosts file exists

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 181

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

if (Test-Path ShostsFilePath) {
Check if the entry already exists in the hosts file
SexistingEntry = Get-Content ShostsFilePath | Where-Object { $
-like "S$ipAddress *S$hostname*" }

if (SexistingEntry) {
Write-Host "Entry already exists in the hosts file."
}
else {
Append the new entry to the hosts file
SnewEntry = "S$ipAddress S$hostname"
Add-Content -Path ShostsFilePath -Value $newEntry
Write-Host "Entry added to the hosts file."

}

else {
Write-Host "Hosts file not found."

}

The script performs the following actions:

e ShostsFilePath: Specifies the path to the hosts file
(C:\Windows\System32\drivers\etc\hosts).

e Shostname: Specifies the hostname to be added to the hosts file.

SipAddress: Specifies the corresponding IP address for the hostname.

if (Test-Path ShostsFilePath) { ... }: Checks if the hosts file exists at the specified path. If
it does, the script proceeds to modify the file. Otherwise, it outputs a message indicating
that the hosts file was not found.

e SexistingEntry = Get-Content ShostsFilePath | Where-Object { S_ -like "SipAddress
Shostname" }: Reads the content of the hosts file and searches for an existing entry
that matches the specified IP address and hostname. If a matching entry is found, it is
stored in the SexistingEntry variable.

e if (SexistingEntry) { ... }: Checks if an existing entry was found in the hosts file. If so, it
outputs a message indicating that the entry already exists.

e else{... }: If no existing entry was found, the script continues to add the new entry to the
hosts file.

e SnewEntry = "SipAddress Shostname": Constructs the new entry by combining the IP
address and hostname.

e Add-Content -Path ShostsFilePath -Value SnewEntry: Appends the new entry to the hosts
file using the Add-Content cmdlet.

e Write-Host "Entry added to the hosts file.": Outputs a message indicating that the new
entry has been successfully added to the hosts file.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 182

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

The script checks if the hosts file exists and if the entry already exists in the file. If the entry is
found, it displays a message indicating that the entry already exists. If the entry doesn't exist, it
appends the new entry to the hosts file using the Add-Content cmdlet.

| have compiled a list of the most used scripts in Software Packaging that you can download
from here.

Working with Conditional Statements

Conditional statements give you greater control and flexibility when creating MSI packages. This
allows you to build robust setups that can be tailored to suit various system configurations,
making it easier for users to install as required.

Conditional statements in MSI packaging give you the control to decide when an action should
be taken. This means that certain files or applications will only get installed if a certain set of
conditions are met. As an example, you can specify that a file should only be installed if another
file is already present on the system.

To use conditional statements in MSI packaging, you'll need to specify the condition in the
appropriate section of the MSI package. For example, to conditionally install a file based on the
presence of a specific registry key, you would add the following code to the component where
the file is located:

<Component Id="MyComponent" Directory="INSTALLDIR"> <File Id="MyFile"
Source="MyFile.txt">
<Condition><![CDATA[REGISTRY_VALUE_EXISTS("HKEY_LOCAL_MACHINE\Software\MyApp",
"MyKey")]]></Condition> </File> </Component>

In this example, the file "MyFile.txt" will only be installed if the registry key
"HKEY_LOCAL_MACHINE\Software\MyApp\MyKey" exists on the system.

Custom actions are yet another way to use conditional statements. Custom actions are scripts
or programs that are executed during the installation process and can be used to perform tasks
that the standard MSI package does not support.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 183

https://www.alexandrumarin.com/downloads/#packaging-script-collection
https://www.advancedinstaller.com/user-guide/custom-actions-page.html%5C
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

For example, you can use a custom action to check for the presence of a specific file on the
system, and use that information to conditionally install a file. To do this, you would create a
custom action that checks for the presence of the file, and set a property that can be used as a
condition in the appropriate section of the MSI package.

The last type of conditional statements that you could use with MSI are called launch
conditions. Prior to initiating the installation process, launch conditions must be satisfied. This
can include verifying that certain system requirements are met, for example, determining if
specific hardware or software components are present. or the presence of certain registry keys.
In other words, launch conditions are a type of conditional statement that are used to control
the behavior of the installation process based on the system configuration. By using launch
conditions, you can ensure that the installation package is installed only on systems that meet
the specified requirements, reducing the potential for errors and improving the overall reliability
of the installation process.

Component Conditions

Advanced Installer makes it much easier to work with conditions while building MSI
components. You can easily set conditions on files, registry keys and other elements to control
their setup process. This streamlined interface really simplifies the entire MSI component
creation process based on system configuration.

To add a condition to an MSI component in Advanced Installer, simply select the component
and add the appropriate condition under Component Properties. There are numerous conditions
to choose from, including system properties, registry keys, file and folder presence, and custom
conditions.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 184

https://www.advancedinstaller.com/user-guide/faq-launch-conds.html
https://www.advancedinstaller.com/user-guide/faq-launch-conds.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O HE-X IR Organization Toals | Your Application - New Project (English US) - Advanced Installer 20.5 - O

Project View Settings ‘Wizards Organization o
A Move - . re
;‘.5'\’ Edit Condition x
: Move
Mew New Delete
Feature Feature IMake Expression to List
‘Wizard New ,;3'— L
1 & Components v+
ol Validate |
n | mponent Properties
See Simple View Insert Operand
Property Component State Feature State General
'é:‘ Java Products Environment Variable Component Action Feature Action GUID: (420FBO0E-2AAF-4C25-8434-A559488451AE}
|:ﬁ Registry Folder [[] Do not register this component with Windows Installer
D} File Associations Directory: APFDIR
Constant: Select... il
] .
=1 Assemblies Condition: E]
= Insert Operator
= Drivers P
= Logical operators: IMP ~ Insert il
¢l senices LI nser| Attributes
Comparative operators: = ~ Insert C] Run From Source Cnly D Transitive
Package Definition))
[CJ optional [Never Overwrite
. Substring/Bitwise operators: >« ~ Insert
ﬁ Install Parameters [shared DLL Reference Count (B 64-hit Component
A @ Predefined Conditions [CPermanent ([Disable Registry Reflection
[uninstall on supersedence (Windows Installer 4.5 or higher)
= Builds Description Condition § .
I [[]shared amongst packages (Windaws Installer 4.5 or higher)
Installation ~
n Analtics Application is being installed Not Installed
I A Deployment Additional Space ®
i Insert .
Requirements et Qualified Components Groups @
mt_

Bz Sy Help oK Cancel Components Isolated With This Component O]

To perform the same actions as explained earlier where the file is only installed if a certain
registry key exists, we must do some steps:

1. Search for the registry key and store this result into a property. We are going to use the
default RESULT_PROPERTY

To do this, navigate to the Search page and click on New Search. A wizard will appear that will
guide you through the process.

Powered by Advancedinstaller.com 185

Eo Advanced Techniques in MSI Packaging

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O AE-EHE - ¢ >\ Search Tools Your Application - New Project (English US) - Advanced Installer 20.5
Project View Settings Wizards Application Search ~ e
KQOobe 4 Mm Qg X
ofe Cut
Test New MNew File New XML New Extended Add Search Add Predefined Delete
Sear(h Search Search Search Search Search = Location = Search Faste
Wizard Test Hew Add Clipboard
=
| O Find | New Search Wizard X
See Simple Welcome to the New Search
g Wizard .
@ Scheduled Tasks This wizard will assist you in setting up a search.
m Windows Firewall
& Users and Groups \io: vr;l\ be able to search for: r)
-a folder

- & registry value

ES con

Server
IS
ﬁ oDBC

?cﬁ SQL Databases

Anything you do in this wizard can also be done
or changed in the "Search” page.

To continue dick Next.

« Back Cancel

Custom Behavior

'O Search

@ Properties
Custom Actions
Table Editor

Project Summary

Next, select to Search for a registry value. As mentioned, we will leave the search results in the
RESULT_PROPERTY.

k Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

186

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O AB-SHE P ¢> @<

Search Tools ation - New Project (English US) - Advanced Installer

Project View Settings ‘Wizards Application Search

f\‘:’ 4@ oo @ l@ '%

New Test Mew Mew File New XML New Extended
Search Search Search Search Search Search~
‘Wizard Test Hew
e

Se

Simple View g

L EI e
Lol

| New Search \

h 9 X

Add Search Add Predefined Delete
Location Search Faste
Add Clipboard
[

Search type
Select the search type that you require.

(©) scheduied Tasks

@ Windows Firewall

:ﬁ Users and Groups

BT com

Server

ﬁ 0DAEC

S 0L Datavases

Custom Behavior

Select the item that you want to search for:

(O search for a file
(") Search for a folder
© search for a registry value

Set a name for your search, This is a property that you can use to retrieve the result
of the search.

RESULT_FROPERTY

JO searen
[v=
Custom Actions
(=5 Table Editor

Project Summary

| Properties

< Back Next > Cancel

Next, define the registry key value that we are searching for.

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

187

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

D HBE % P~ €5 @ Search Toals ‘our Application - New Project (English US) - Advanced Installer 20.5 — u]
Project View Settings Wizards Application Search

£QO0Poe 9 & 9 =X

LK o3

X 0@) 'O * # L ’ Cut

Mew Test Mew Mew File Mew XML New Extended Add Search Add Predefined Delete
Search Search Search Search Search Search - Location = Search Paste
Wizard Test New Add Clipboard

- ‘ Application Search
Lo J 1
Mew Search Wizard *
See Simple View &
Search Properties
o S

2 Set up the search parameters, @ | -
(©) scneduled Tasks

m Windows Firewall

& Users and Groups

Type a the name of the key and value to be searched or use the [...] button to select -
0 one from the registry.
sy com

Root: HKEY_LOCAL_MACHINE
Server

Is
ﬁ} ODBC

= Value: MyKey
Ef3 S5O0L Databases

key: \Software\MyApp\

Custom Behavior

O searmn

@ Properties

< Back Next > Cancel

{53 Custom Actions

5] Table Editor

Project Summary

Select to retrieve the value and finish the wizard. After the wizard is completed check if your

registry key is in the 64-bit portion of the registry and check the appropriate checkbox. You can
also do a Test Search just to confirm that everything is in order.

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 188

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O ESE EHE <> @<

Project View Settings Wizards Application Search

g‘(a@ oo .@ o icl-},‘ ﬁ 'S.)ﬁi o x

Search Tools Your Application - New Project (English US) - Advanced Installer 20.5*

Cut
Mew Test Mew Mew File Mew XML Mew Extended Add Search Add Predefined Delete
Search Search Search Search Search Search ~ Location Search Paste
Wizard Test MNew Add Clipboard
o Application Search
Searches Registry Location Properties
- Target C te
See Simple View & I8 Target Computer
~ O RESULT_PROPERTY
o CiuInE o MyKey Root: HKEY LOCAL MACHINE e
@ Scheduled Tasks

Key: Software\MyApp
() winows Firewal

Name: Mykey
~
‘6 Users and Groups

Type: Retrieve the raw value

ES com

{8 search the 64-bit portion of the registry
Server

s

ﬁ\ ODBC

£ 9L Databases
Custom Behavior
O search

+

I\T:| Properties
Fa custom Actions

[5] Table Editor

Project Summary

2. Use the above created Property to define the condition on the component where the file
is located.

A property has two states:
e It has a value and therefore it exists
e [t has no value and therefore it does not exist

Because we don't care about what value the property outputs and we are only interested if it
exists or not, defining the condition on the component where the file is located is quite simple.

All we have to do is navigate to the Organization page and we set the condition for our
HelloWorld.exe component to RESULT_PROPERTY.

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 189

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

9 HE-X A i I Organization Tools Your Application - New Project (English US) - Advanced Installer 20.5% m] X
“ Project View Settings Wizards Organization e
A “+ Go to Resou
=~ o 4 Add to List
MNew w Share Se -
Feature Feature N Component Cu 'aAdd Children to List
Wizard New Organize Actions
o Organization Q5ea v+
Features And Components Component Properties
See Simple View & = Pmduc.t
~ [l MainFeature G |
¢ shorteuts > @ APPDIR APFDIR enera
> 48 HelloWorld.exe APPOIR| ¢ o GUID: {420FBO0E-2AAF-4C25-8434-A55948845 1AE}
ﬂl Tiles » @ Productinformation K LM\ Softwa _
[_] Do not register this component with Windows Installer
mwa Java Products
=
N Directory: APPDIR
2 .
!lH Registry
Condition: RESULT_PROPERTY
E‘ File Associations
P Assemblies -
! Attributes
- — —_
= Drivers [_J Run From Source Only [Transitive
ol Seni [CJ optional [CINever Overwrite
iy Senices -
[[shared DLL Reference Count (B 64-bit Component
PaCkage Definition [C)Permanent [Disable Registry Reflection
£] install Parameters (0] Uninstall on supersedence (Windows Installer 4,5 or higher)
5 [C) Shared amongst packages (Windows Installer 4.5 or higher)
== (rganization
===}
(2 Buids
Additional Space @
B anaiyiics
[7| Deployment Qualified Components Groups @
Project Summary - .
! ! Compaonents Isolated With This Compaonent @

During the install phase, the MSI will first perform the search function to see if the registry key
exists and populate the property, afterwards it will parse through all the components which are

marked to install. Once it reaches our component with the HelloWorld.exe file, it will first check if
the condition is met, meaning if the property is present or not. If the property is present, it
means the condition has been passed and the component is then installed on the machine.

Launch Conditions

In Advanced Installer, configuring a launch condition is a straightforward process. You can
create a launch condition to check for the presence of specific system requirements, such as
the availability of a specific version of the .NET Framework, or the presence of specific registry
keys or files on the system.

To configure a launch condition in Advanced Installer, you can simply navigate to the Launch
Conditions page and create a new launch condition. Advanced Installer offers by default
multiple pre-configured types of launch conditions and we can separate them into:

e System

e Software

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 190

D

https://www.advancedinstaller.com/user-guide/launch-cond.html
https://www.advancedinstaller.com/user-guide/launch-cond.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

System Launch Conditions

When it comes to system launch conditions, you can easily define on which Operating System

your package will be supported, what minimum version of Windows Installer is needed, but also

more in-depth checks such as minimum physical memory that the user needs to run the

software, minimum screen resolution, minimum color quality and so on. For more details check

out this page.

QI HEE- i~ ¢ >@s Launch Conditions Tools Your Application - New Project (English US) - Advanced Installer 206
Project View Settings ‘Wizards Launch Conditions

DefaultBuild
Wizard Build
Launch Conditions
0
¥ System & Software Custom
See Simple View 4

Supported Operating Systems

[T™) File Associations
~ @64-bit Windows versions
P

g Assemblies

-
S Drivers
= rver 2008 R2 %64
il senices
v 2012 x64
Package Definition
0122364

ﬁ Install Parameters
i > @Windows 11x64

L. Organization > @ Windows Server x64
ams ~ @132.bit Windows versions
By Buics > @ Windows Vista x35

> @ vindows Server 2008 x86

-]

o5 Analtics

I A Deployment Windows Installer
Requirements (O Minimum version:

- i
oz Prerequisites

@ T — System Requirements

(O minimum Physical Memary: 512

¥ lerge 1
o Werge Hodules

User Interface

) Themes
- Oru
[=] Dialogs -
Or
Slideshow On
"] Transtations o
System Changes O
[+ enronment Drever
() scneduled Tasks [Jpreventrunning on ARMs4 devices
Project Summary Package
Ready

Software Launch Conditions

Coming back to our scenario where you would need a certain version of .NET Framework
installed on the machine, if we navigate to the Software launch conditions tab we can see that

Advanced Installer offers many predefined checks for some of the most popular software

products out there such as:
e _NET Core
.NET Framework
Internet Explorer
Internet Information Services (IIS)

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

191

https://www.advancedinstaller.com/user-guide/launch-conditions-system.html
https://www.advancedinstaller.com/user-guide/launch-conditions-software.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

In our case, all we need to do is check .NET Framework and select the desired version, for the
scope of this example we went with .NET Framework version 4.7.2.

D

Adobe Reader

Java Runtime Environment (JRE)
Java Development Kit (JDK)
DirectX

Office applications

XNA Framework

SQL Server Express

SQL Server Compact

SQL Server ODBC Driver
ActiveSync / WMDC

VSTO Runtimes

Office 2003 PIA

Office 2007 PIA

Office 2010 PIA

Office Shared Interop Assembly
Sharepoint Foundation
PowerShell

Windows PowerShell

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

192

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

QA i-P ¢ > s Launch Cenditions Toals Your Application - New Project (English US) - Advanced Installer 20.6
Project View Settings Wizards Launch Conditions

Build
Launch Conditions
Fel
% System 5 Software Custom
See Simple View 4
- (CILNET Core; NET Runtime 7.0
[T Fie Assaciations
8 .NET Framework: NET Framenork 4.7.2
v
g Assemblies (O mtemet Explorer: Intemet Explorer 11
Drivers (Ointernet Information Services: Internet Information Services 10.0
Adobe Reader: A 0
Senices] \robat Reader DC 2013
(03ava Runtme Environment: Java Runtime Environment 10
Package Definition
Oiavap Java Devel tKit 19
ﬁ Install Parameters Oloreces: —
: irectt
m
g, Organization (instalied Office appiication: Microsoft Access
ﬁl Builds (Cxma Framework: XNA Framework 4.0
o s ()sQL Server Express: 5QL Server Express 2019
o ()sQL Server Compact: SQL Server Compact 4.0
[2 oepioyment
()sQL server ODEC Driver: SQL Driver 17 for SQL Server
Requirements ([Oactvesync / wmDC: Windows Mobie Device Center 6.1
E"_: Prerequisites (instaled VSTO Runtime: Visual Studio Tools for Office 4.0 Runtime
5§ Launeh condtions Omstalled 0ffice 2003 P1a: Mirosoft Smert Tag
+ Oinstalled Office 2007 P1A: Microsoft Office Project
% Merge Modules
v Oinstalled Office 2010 P1A: Microsoft Office Project
User Interface (Joffice Shared Interop Assembly: Office 2010 Shared Interop Asserbly
_ Themes [sharePoint Feundation: Microsoft SharePoint Server 2016
[=] pialogs Opouershel: PowerShell 7.2
— windows Powershell Windows Pon ;
5] Siideshow O indows PowerShell 5.1
x (JJRun orly if user has permissions for deploying SharePoint solutions
Az Translations
- (JJRun orly if Administration and Timer SharePaint services are started
System Changes (CJRun orly if the packaged SharePoint solutions are not aready deployed
5| Environment
(D scheduled Tasks
Project Summary
Ready

2016+

Both

Custom Launch Conditions

In Advanced Installer, you can define custom launch conditions by using installer properties or

environment variables. These properties can be predefined or set by searches and custom

actions.

To create a new launch condition, simply click on the "New" button, the "New" list context menu

item, or press the Insert key while the list control is focused. The Edit Launch Condition Dialog

will pop up, allowing you to specify a launch condition.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

193

https://www.advancedinstaller.com/user-guide/launch-conditions-user.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

FYGEE EEL B Launeh Conditions Toals Your Application - New Project (Engish US) - Advanced Installer 206 - o X
Project View

Settings Wizards Launch Conditions [2]
DefaultBuild

Wizard Build

Launch Conditions
o

¥ System <3 Software Custom
See Simple View 2

- Condition Description Builds New...
[T Fie Assaciations T TS O RE AR VERSION 52155 5 rataid B

r:a' Assemblies

-
=" Drivers
=

gl senices
Package Definition

ﬁ Install Parameters

-
~= Organization
L=

ﬁ' Builds

.~}
W anaittics

[2 oepioyment
Requirements

5= rerequisites
5§ Launeh condtions

F, Werge Modules

User Interface

\ Themes

[=] pislogs
Slideshow
[A5] Transiations
System Changes

-5 Environment

(D scheduled Tasks

Remove

Project Summary

Ready

To modify a launch condition, use the "Edit" button, the "Edit" list context menu item, or press the
Space key while an element from the list control is selected. The Edit Launch Condition Dialog
will pop up, allowing you to edit the launch condition.

If you no longer need a launch condition, you can remove it using the "Remove" button, the
"Remove" list context menu item, or by pressing the Delete key while an element from the list
control is selected.

Defining custom launch conditions in Advanced Installer is a best practice that can help to
ensure the reliability and efficiency of the installation process. By specifying the conditions that
must be met before installation, you can reduce the potential for errors and ensure that the
installation package is installed only on systems that meet the required specifications.

Custom Actions as Conditional Statements

One of the key benefits of custom actions is their ability to act as conditional statements,
enabling you to create complex installation packages that can adapt to different system
configurations.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 194

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Custom actions can be used to perform a wide range of tasks during the installation process,
including creating registry keys and values, copying files, and executing scripts or other
programs. By using custom actions as conditional statements, you can control the behavior of
the installation process based on the system configuration.

For example, you can use a custom action to check for the presence of a specific file or registry
key on the system, and use that information to conditionally install or execute other custom
actions. You can also use custom actions to perform tasks that are specific to a particular
system configuration, such as installing a driver or configuring a network adapter.

This can be done using a wide range of syntax and scripting languages, including VBScript,
JavaScript, C++ and even C#.

Depending on the approach you want to take with Custom Actions you can either:
e Write the custom action to initialize a variable as we did above and then check during the
custom launch condition if the variable is initialized or not
e Write the custom action to produce an error if the check is not passed. When the custom
action is inserted in the Sequence with Advanced Installer make sure that the “Fail
installation if custom action returns an error” is checked. The installer is awaiting a
return code either with 0 (success) either with 3010 (reboot)

Let's take the second scenario and consider that we want to create a script that checks if a
certain registry key exists. If that registry key is missing we will give back the return code 100
which will be interpreted as a failure.

Const HKEY LOCAL MACHINE = &H80000002
Dim RegKey

Dim objWshShell
Set objWshShell
strComputer = "."

CreateObject ("WScript.shell")

Set objRegistry GetObject ("winmgmts:\\" & strComputer &
"\root\default:StdRegProv")
RegKey= "ProgramFilesDir"
strKeyPath = "SOFTWARE\Microsoft\Windows\CurrentVersion"
objRegistry.GetStringValue
HKEY LOCAL MACHINE, strKeyPath,RegKey,strValue
'check if the value exists
If IsNull(strValue) Then
wscript.quit (100)

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 195

https://www.alexandrumarin.com/create-c-csharp-dll-for-msi-custom-actions/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

End If

As you can see above, we are checking with VBScript if the ProgramFilesDir which is located in
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion has any value. If the value is null then
we will return the error code 100.

Now that we have the script created, all we need to do is navigate to the Custom Action page
and set it up like so:

< Your Application - New Project (English US) - Advanced Installer 2067 - o X

Clipboard
° Custom Actions
Add Custom Action | Existing Custom Actions Launch Attached File
See Simple View 4 o
o Launch attached file @& : Properties
’_} Launch Conditions Launch installed fie Attached file: C:\Users\User\Desktop\checkregistry. vbs
&, Merge toduies Launch fie from property Fie type: Vioaal bask st (o vbe)
Launch EXE with working directon
User Interface ° v Function:
Launch fie
\ Themes NET Instaler Class action Action data:
[oigtally sign fil at buid tme
[=] pialogs ored i the MST package, but i not be instaled on
slideshow .
— Instalation Sequence Execution Time ®©
Azl Translations © Immediately
- Show: ANl Install Uninstal Maintenance
When the system is being madified (deferred)
| System Changes Wizard Dialogs Stage
. During instalation rolback
| Environment G searches After the system has been successfuly modified {commit)
G) Scheduled Tasks G Paths Resolution
G user Selection Execution Options @
q] Windows Firewall
- Install Execution Stage
&13 Users and Groups
Mou
ES cou installation if custom at
Action Text...
Server
1% Remave Resourcas Execution Stage Condition ®
5 Add Resources - -
. B install (Juninstal [IMsintenance Show upgrade options
— % Finsh Execution
() S0LDatabases Condition:
Finish Dialogs Stage
Custom Behavior Advanced execution scenarios. ..
O searcn
’
]‘T:] Properties
F& custom Actions

[Table Editor

Project Summary

|Ready

If you remember our discussion in the MSI Packaging Fundamentals ebook, immediate
execution custom actions can be executed before the |Installlnitialize Action, and this is exactly
what we need because we need to run this script as soon as possible to confirm that the system
has the requested parameters.

As you can see in the Install Execution Stage, the custom action is set at the top to be the first
CA that is executed, and when it comes to Execution Stage Conditions we are only setting it to
run during the Install phase.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 196

https://www.advancedinstaller.com/application-packaging-training/msi/ebook.html
https://learn.microsoft.com/en-us/windows/win32/msi/installinitialize-action
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Working with Dependencies

While conditional statements give you the possibility to clearly define the needed environment
for your installer, it doesn’t let you modify the system in order to make the proper changes for
your application to be installed. As seen in the chapter above, conditional statements for
software applications can be easily added into the MSI by using Advanced Installer, but what if
you want to check if that particular dependency is installed and if not, install it yourself?

This is where the Prerequisites feature comes in handy and lets you quickly create a bundle
which contains your application and the desired dependencies.

Prerequisites are software components that must be installed before the installation of an
application to ensure its proper functioning. Advanced Installer provides a wide range of
prerequisites that can be easily added to MSI packages, including .NET Framework, Visual C++
Redistributable, and SQL Server Express.

Adding prerequisites to MSI packages is important for several reasons. Firstly, it ensures that
the application will run correctly on target systems, reducing the risk of compatibility issues and
user frustration. Secondly, it simplifies the deployment process by automating the installation of
required software components. Finally, it can improve the performance of the application by
ensuring that it has access to the latest software components.

Adding prerequisites with Advanced Installer is a straightforward process that can be done in
just a few steps. Here's how to do it:

Open your Advanced Installer project and go to the Prerequisites page. Advanced Installer
provides a wide range of options for configuring prerequisites, including the ability to specify a
specific version of the prerequisite, the installation path, and the location of prerequisite files.

This view enables you to incorporate existing installers in your package, enable Windows
features, and configure specific Windows Server roles.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 197

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

QDI HEE- - ¢ >3- Prerequisites Taols YLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7* — o X
Project View Settings Wizards Prerequisites
a - a0 - - =9)
— = fo
Uy B t® Ly S
New MewExecutable Mew Windows New Package NewWindows Addfrom Undo Redo
Prerequisite Package Installer Package from URL Feature bundle Repository ™ A ste
Wizard New Add Undo Clipboard
Prerequisites
o
Additional Packages Frameworks and Runtimes
% Packages
See Simple View ;-4 &
" 55 NETFramework 472 fra
[Files and Folders Main Package Predefined Prerequisites
T, Windows Features — S
A snoneuts [Windows Server Roles 0 weTF
O NeTFr
[3) Tites 0 meTF
(0 .NET Framenark 3.5 591 Client Profile (web instalker)
\wp Java Produds () .NET Framenark 4.0
@ Regist (O .NET Framewark 4.0 (web installer)
& reasly ([.NET Framework 4.0 Client Profile
D} File Associations [.NET Framewark 4.0 Client Profile (web installer)
([.NET Framemwork 4.5
r;,, Assemblies ([.NET Framework 4.5 {web installer)
s ([\NET Framework 4.5.1
= Drivers () MET Framework 4.5.1 (web installer)
ol () .NET Framework 4.5.2
74 Senices () NET Framemork 4.5.2 (web installer)
Package Definition H NET Frameork 4.6
) install Parameters O
- O NeTFr
s Organization 0 werr
o () .NET Framework 4.6.2 {web installer)
[y Builds A
(O .NET Framework 4.7
B snalfics O NET Framework 4.7 b nstallr)
(O .NET Framework 4.7.1
[oeptoyment () .NET Framework 47,1 fweb installr)
@ .NET Framemork 4.7.2
Requirements (O .NET Framework 4.7.2 {web installer)
) WET Eramemnde a &
E"j Prerequisites
5 vaunch conditions Global Prerequisite Options ®
‘& Merge Modules Donnloadjextraction folder: [AppDataFelder] [[Manufacturer] \[[Froductiame] \orerequisites
)
() Store Feature-based prerequisites in MSI database (if applicable]
User Interface (CJtore Feature based tes in MST database (f applicable)
_ (D not remove prerequisite files
X3 Themes
Q eck launch conditons before searching for prerequisites
= 8 check launch conditions befo ching for tes
Project Summar () Hide already installed prerequisites
D Notifications

All prerequisite setup files can be bundled with your package or placed online and accessed via

a URL. If the prerequisite is not found during installation, it will be installed automatically.

Advanced Installer can also download and install prerequisites from a remote location, such as

a web server or network share. This ensures that the most recent versions of the prerequisite

are always used, lowering the possibility of compatibility issues.

In the main Prerequisites page you can see on the right hand menu that you have a ton of

predefined prerequisites that you can choose from. Some of these prerequisites are:

e NET Framework
.NET Core

.NET Runtime

SQL Server Compact
SQL Server Express
MySQL Server

SQL Server OLE DB
Adobe products
JRE

JDK

Silverlight

Python

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

D

198

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Internet Explorer
DirectX

XNA

Access Runtimes
Visual C++ Redistributables
VSTO

s

Apache Tomcat
MSML

Windows Installer
PowerShell

And many more

When you select a predefined prerequisite, Advanced Installer asks you if you want to download
the package next to your project and include it in the package, making the overall process much

simpler.

O HeE- % P > @ Prerequisites Toals

“ Project View Settings Wizards Prerequisites

A == a0 == ced =, n
= U 3 U Dy ==
HNew New Executable New Windows HNew Package New Windows Add from Undo Redo
Prerequisite Patkage InstallerPackage fromURL Featurs bundie Repository~ -
Wizard New Add Undo
Prerequisites
o

Additional Packages

o Packages
See Simple View g e gt
5% NET Framework 4.7.2

(= Files and Folders ~ [Msin Package
3 -NET Core Runtime 3.1.32x86

A snorteuts &, Windows Features
[Windows Server Roles
[3) Tiles

s Java Products

4l senices package?
Package Definition
] Install Parameters

m
~= Organization
[T

[y Buids

L~
W Analttics

E Deployment

Requirements

- =

&= Prerequisites
,?; Launch Conditions
¥ 1erge

36 Merge Modules

User Interface

) Themes

Project Summary

Clipboard

Frameworks and Runtimes

Predefined Prerequisites

[0 ASP.NET Core Hosting Bundle 6.0. 15
] ASP.NET Core Hosting Bundle 7.0.5
] ASP.NET Core Runtime 5.0.17 x64
() ASP.NET Care Runtime 5.0.17 %86
() ASP.NET Care Runtime 6.0.16 364
(] ASP.NET Core Runtime 6.0,16 %86

‘.'H: Registry | () ASP.NET Core Runtime 7.0.5 x64

[T Fite Associations C=ra

stj Assemblies o Download prerequisite and include in package?

5 Drivers The selected prerequisite is currently using an online location. Do you

want to download it next to your project and include it in the

Yes No

() .NET Core Runtime 2.2.6 x86

(] .NET Core Runtime 3.0.0 x84

[.NET Core Runtime 3.0.0 x86

([.NET Core Runtime 3.1,32 x64

8 .NET Core Runtime 3.1.32 x86

(0] ASP.NET Core Runtime 3.1.32 x54
() ASP.NET Core Runtime 3. 1.32x86

NET Framework

} 1) .NET Core Runtime 2.2.6 x64

Global Prerequisite Options

Downloadfextraction folder: [AppDataFolder] [IManufacturer] \[IProductiName] \prerequisites

[Store Feature-based prerequisites in MSI database (if applicable)
[[JDe not remove prerequisite fies
18 Check launch conditions before searching for prerequisites

([Otiice already installed prerequisites

Q Notifications.

You can also select the extract folder for each selected prerequisite, keep the prerequisite files
after installation, hide installed prerequisites and check the launch conditions before searching

for the prerequisites.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

199

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Advanced Installer also allows you to enable Windows Features.Some Windows programs and
features must be enabled before applications can use them. Other features are enabled by
default, but you can disable them if your application does not require them.

Use the [Windows Feature bundle] toolbar button or the "New Windows Feature bundle" context
menu item to add a Windows Features bundle then select the Target Operating System. Once
you have chosen the OS, the Available Windows Features will be populated with all the options
available for those particular OSes.

O BHE- R E L Prerequisites Teols VLC Media Pleyer - VLC Media Pleyer.aip (English US) - Advanced Installer 20.7° - o X
“ Project View Settings Wizards Prerequisites (]
A - o - == =3 B Copy
R O% d O= Sl g))(
R L =) G = Socut
New NewExecutable New Windows NewPackage New Windows — Addfrom Undo Re N Delete Mlove to
Prerequisite Package Installer Package fromURL Feature bundle Repository ™ M Reposit
Wizard New Add Undo Clipboard
Prerequisites
0

Additional Packages

% Packages
See Simple View g @
5 NETFramework 472 Installation
ain Pac
. e

[Files and Folders h Conditon: 1
A snortauts Featire tavalatle policy: Rolback installation v
[3) Ties B Windows Server Roles Uninstal policy Do not remove instalkd features v

\&p JavaProduds Target Operating Systems

Y Registy Workstation: Ovsa 07 Os Ost Br Bu
D}F\Ie‘\ssnmalmns Server: (D208 Jaoosrz (J2o12 Dawizrz Daois (Jaoie a2z

g Assemblies

Available Windows Features

o
[Drivers ~ B.NET Framework 3.5 (indudes .NET 2.0and 3.0)
ok O Communication Foundation HTTP Activation
oLy Senvices wnication Foundation Nen-HTTP Activation
> O x Advanced Services
Package Definition (D Active irectory Lightweight Directory Services
Ocontainers
ﬁ Install Parameters C0ata Conter Bridging
B Grganization > [evice Lockdown
ama O 5 [JHyperv
2 Builgs > [Dinternet Information Services
% [internet Information Services Hostable Web Core
[o) > [Jtegacy Components
g /navtics 5> [JMedia Features
A > [vicrosoft Message Queue (MSMGQ) Server
LI Deployment (Microsoft Print to PDF
([Omicrosoft xps Document Viriter
Requirements 5 [JMultPoint Connector
= prerequisites > OJprint and Document Services
O= [JRAS Connection Manager Administration Kit (CMAK)
J%, Launch Conditions (JRemote Desktop Services Application Server
= ote Differential Compression API Support
¥ llerge Modules Ustener
s 1er9 vices for NFS
User Interface ple Network Management Protocol (SNMP)
ple TCPIP services (.. echo, daytime etc)
) Themes LO/CIFS File sharing Suppart
= JSMB Direct
— relner o

Project Summary

{0 Notifications
Advanced Installer also offers multiple Windows Server roles from which you can choose to

include in your package. Roles selected in this view only apply when running the package on a
Windows Server. They will be ignored on any other OS type.

To include a server role in your package, select the Windows Server Roles tree item, then check
the roles you want to include. The roles are organized by the earliest supported version of the
target server's operating system.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 200

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

QI HE-X - ¢ > @+

Bl o e s

[~ Files and Folders

A snoneuts
[3) Tites

ISh Java Products

r;,, Assemblies

o

5, omers

gl senices
Package Definition

) install Parameters

m
== Organization
[T

o
[y Builds

[~}

B Analstics

[oeptoyment
Requirements

&=

= Prerequisites
5 vaunch conditions

¥ tlerge i

¥, Merge Modules
User Interface

365) Themes

Project Summary

Prerequisites Tools VLC Media Player - VLC Media Player.aip (English US) - Advanced Installer 20.7*

Wizards Prerequisites

5 NETFramework 4.7.2
~ =7 Main Package
5 NET Core Runtime 3.1.32 k86
T, Windows Features
5 FeatureBundle
[£, Windows Server Roles

L& g0 e = g 0
Usp [~ 1ii} 5=2) Dt .4
New New Executable MNew Windows New Package New Windows Add from Undo Redo
Prerequisite Package Installer Package fromURL Feature bundle Repository = - ste
wizara New ad Ungs Ciipboara
Prerequisites
o
Additional Packages ‘Windows Server Roles
@
See Simple View 2 @ Packages

Name
Windows Server 2022 and later
[Network Controller
Windows Server 2019 and later
[Device Health Attestation

Windows Server 2016 and later

> [multpoint Services
o =
i Registy [0 Host Guardian Service
D} File Associations Windows Server 2012 and later

(] Active Directory Federation Services
[0 storage Services

[Remote Access

[volume Activation Services

[windows Server Essentials Experience
[Windows Server Update Services

Windows Server 2008 and later

[0 Active Directory Certificate Services

[Active Directory Domain Services

[Active Directory Lightweight Directory Services
[J Active Directory Rights Management Services
[Appiication Server

[DHCP Server

[0 Windows Deployment Services
Windows Server 2008

() Terminal Services

O Notifications

Of course, you can add your own packages and create a suite installation, a chapter we have
already covered in the first MSI Packaging fundamentals ebook.

Creating Transform Files

MSI (Microsoft Installer) transform files are an extremely useful tool for customizing and
modifying MSI packages without having to directly edit the original package. Transform files,
also known as MST files, enable you to modify an existing MSI file by specifying changes such
as adding or removing features, changing installation paths, changing registry settings, and
more.

Before we go any further, consider the following best practices for ensuring the effectiveness
and dependability of your MSI transform files:

e Understand the MSI File Structure: Familiarize yourself with the structure and

components of an MSI file. This will help you identify the areas you want to modify and
ensure that your transform file integrates smoothly with the original package. For this

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 201

https://www.advancedinstaller.com/application-packaging-training/msi/ebook/create-suite-installations.html#_idTextAnchor099
https://www.advancedinstaller.com/application-packaging-training/msi/ebook/create-suite-installations.html#_idTextAnchor099
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

steps, we really recommend that you have a look over our first MSI Packaging Essentials
free Ebook.

e Use a Reliable MSI Editor: Use a reliable MSI editor tool, such as Advanced Installer, to
create and edit transform files. Advanced Installer provides a user-friendly interface and
powerful features for working with MST files.

e Test Thoroughly: Always test your transform files on different target machines and
operating systems to ensure compatibility and proper installation. Testing helps identify
any issues or conflicts that may arise due to the modifications made in the transform
file.

e Document Changes: Keep detailed documentation of the changes made in the transform
file. This will help you track modifications, troubleshoot issues, and maintain a record of
the customization process.

e Follow Standard Naming Conventions: Use standard naming conventions for your
transform files to ensure consistency and avoid confusion. Consider including version
numbers, date stamps, or a meaningful description in the filename.

e Versioning and Upgrades: If you plan to create multiple versions or upgrades of your
software, maintain consistency in the naming and structure of your transform files to
facilitate smooth upgrades and ensure compatibility between different versions.

Click-Once Apps

ClickOnce is a Microsoft deployment technology that facilitates deploying Windows applications.

In one of our previous articles, we discussed How to Replace the ClickOnce app with MSIX. But,
what if you want to "repackage" a ClickOnce application? That's what we'll be covering in this
article.

If you want to learn more about repackaging, take a look at our repackaging best practices.

What are the challenges of repackaging a ClickOnce application?
ClickOnce shares some similarities with MSIX — the main one being that they are per-user
applications.

Per-user applications are kind of difficult to repackage. In general, IT Pros are used to building
MSI and EXE packages to be installed per-machine. That means that most of the applications

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 202

https://www.advancedinstaller.com/application-packaging-training/msi/ebook.html
https://www.advancedinstaller.com/application-packaging-training/msi/ebook.html
https://www.advancedinstaller.com/how-to-replace-clickonce-with-msix.html
https://www.advancedinstaller.com/user-guide/repackager.html
https://www.advancedinstaller.com/user-guide/repackaging-best-practices.html#repackaging-best-practices
https://www.advancedinstaller.com/user-guide/qa-current-or-all-users.html#qa-current-or-all-users
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

that we find on the market today require administrative rights to be installed. So, most vendors
prefer the per-machine method of deploying applications.

This comes as no surprise, since the per-machine approach makes it much easier to manage
your applications in the infrastructure.

One mistake that we see happening very frequently is for IT Pros to convert ClickOnce
applications (per-user) to per-machine applications without considering all the issues that could
occur during the execution of that particular application.

Never change the installation type of an application unless you fully understand how it works.

Usually, you want an application to save some settings or running information in files. For
per-user applications, most vendors consider placing those setting files near the executable.

The problem comes if you try to convert the application to per-machine. Why? Because users in
an infrastructure will probably not have the necessary rights to write in a per-machine location.

Some might say that you can always give additional permissions when you build your
package, but that is a security point that needs a deeper discussion.

For now, let’s consider that additional permissions are not allowed on per-machine
installations. Check out the MSI Permissions Guide: Three Ways to Add Rights With your
Installer

How to Repackage ClickOnce Applications?

As you will see, repackaging a ClickOnce application is not very different from capturing other
types of installers.

1. Open Advanced Repackager and go through the standard process of repackaging an
application. A full tutorial can be found here.

2. Once you repackaged your application, your AIP(Advanced Installer Project) should
contain all the files in a per-user location:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 203

https://www.advancedinstaller.com/msix-sccm-task-sequence.html
https://www.advancedinstaller.com/per-machine-deployment-msix-sccm.html
https://www.advancedinstaller.com/per-machine-deployment-msix-sccm.html
https://www.advancedinstaller.com/user-guide/permission-dialog.html#permission-dialog
https://www.advancedinstaller.com/different-ways-add-permissions-msi.html
https://www.advancedinstaller.com/different-ways-add-permissions-msi.html
https://www.advancedinstaller.com/user-guide/repackager.html#repackager
https://www.advancedinstaller.com/user-guide/tutorial-repackager.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

HBE- 5D € » @=
Home View Settings Wizards Files, Fol
)

[[New Library =
™~ L ‘—1‘ [New Text File Update [<b] MainFeats
New en New New -

M Folder» Shortcut To = ({4 New File Operation - NI File XML File JSON Fil M
Wizard New Featy

° Files, Folders and Shortcuts

- Folders Size Type Version Physical Source

See Simple View 2 I8 Target Computer W Sample.exe 32KB Application 0.000 CA\Users\theje\Desktop\Sample.exe

Application Folder 5 license.rtf 21KB Rich Text Format C:\Program Files (x86)\Caphyon\Advanced Installer 19.5\license.rtf

Product Information ’_lpp"fat‘ﬂ_” Shorteut Folder # advinst.chm 23493 KB Compiled HTML caProgram Files (xa6)\Caph dvanced Installer 19.5\advinst.chm

@ product Detals Z ? Dockerfile 1KB File €:\Pragram Files (xs6)\Caphyom\Advanced Installer 19.5\bir\Do ckerfile

[Digial Signature i BestPractices.cub 232KB CUB File C:\Program Files (x86)\Caphyom\Advanced Installer 19.5 actices.cub

&5 Updater

% Upgrades

[& Licensing 5 Ddl Start Me

", Multiple Instances v T User Profile
Resaurces Docurment

[Files and Folders

M Shorteuts Favorites

B Ties v Apph(atmrnwﬂa(a

@ Java Products o
@ Registry

[T File Associations
2 Assemblies

= Diivers

b Senices

Package Definition

] Install Parameters
o Organization

&5 Builds

M Analytics

[7 Deployment o
Requirements

" Prerequisites

L1 aunch Conditinne

Best practices for Per-user applications

There are two main golden rules for per-user applications:
1. Make sure the self-healing mechanism is working properly at all times
2. Don’t change an application installation behavior

Following the second rule, while using ClickOnce applications, we must place files exactly
where the original installer places them. In our case, all the files are copied directly into
%appdata%.

But, how do you address this situation when you have a multiple-user setup on a single
machine?

When you deploy per-user applications within any infrastructure, it takes time before it reaches
the user. It also uses up additional bandwidth for the actual installer to be downloaded into the
user cache again. So, what do we do in this case?

We need to place all the files in a per-machine folder (e.g. C:\Program Files\My App) and copy
them for each user when he/she logs into the machine with the Active Setup mechanism.

The challenge here is making sure we also follow golden rule number one: making sure that the
self-healing mechanism works.

If you want to read more about it, we already touched on this subject in this article.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 204

https://www.advancedinstaller.com/restore-missing-msi-sccm-cache-folder.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

When it comes to MSI’s, if the MSI is not present in the original install location and files need to
be copied, then the self-healing process fails. That is one of the reasons we are not leaving the
files as they were captured (in %appdata) and we are moving them in a per-machine location
(C:\Program Flles\My App) and then copying them using a Custom Action.

One other aspect we need to consider is the shortcut. In our example, the shortcut is placed
under each user Start Menu folder, located in:

C:\Users\YOUR USER\AppData\Roaming\Microsoft\Windows\Start Menu

To make it easier, we will place the shortcut on a per-user machine, but the target of the shortcut
will point to %appdata%, meaning it will open the executable from each user location.

How to adjust the package?

Knowing what we know now, we can adjust the package.

1. Let's first move all the files into the Application folder:

FEB-X5P» ¢ @ = Files And Folders Tools Clickonce App Repackaged - clickonceapprepackaged.aip (English US) - Advanced Installer 19.5*
H View Setting Wizar Fil d Shorteuts
~ [t [[+_ ‘7 [Add Temporary Files = L3 Copy E] r T % < r |— S
LS ! & < }) < # v, ._\, #
N ate |7 k] Y B3 U5 [3 Import Cu & e / & B G o >
. N New New New Add Add . Delete Propeties Hash Ignore Refresh Gote Move To Condition _ Howto Visible

ew ew
Folder - Shortcut To~ [14) New File Operation * INIFile XML File JSONFile Folder Files = Files Attributes

Wizard New Add Clipboard Options

e files Videos members~

° Files, Folders and Shortcuts

aliz Name Size Type Version Physical Source
¥ advinst.chm 23493 KB Compiled HTML .. CA\Program Files (x86)\Caphyom\Advanced Installer 19.5\advinst.chm
Application Folder BestPractices.cub 232 KB CUB File C:\Program Files (x86)\Caphyon\Advanced Installer 19.5\bin\BestPractices.cub

Product Information orteut Folder Dockerfile 1Kk8 File C:\Program Files (x86)\Caphyon\Advanced Installer 18.5\bim\Dockerfile

P Product Details .) B licenseqtt 21KB Rich Text Format C)\Program Files (x86)\Caphyon\Advanced Installer 19.5\license.rtf

[Digtl Signature ? “ B sample.exe 32K8 Application 0000 C\Users\theje\Desktop\sample.exe

&5 Updater

% Upgrades

[Licensing > s enu
4, Mutiple Instances ~ 7 User Profile

See Simple View

i

Resources
[Files and Folders
A Shorteuts
[Th Tiles

~ " application Data
w» Java Products

¥ Registry
[T File Associations

o» Assemblies

©, Drivers

b Senices

2. Now that the files are placed on a per-machine location (C:\Program Files
(x86)\Caphyon\ClickOnce App Repackaged), it's time to add the Custom Action that will copy
the files during the Active Setup. To do this, navigate to the Custom Actions Page and add a
new “Launch attached file” action. For this, we are using this simple VBScript:

Option Explicit

Dim fso, objWShell, appData

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 205

https://www.advancedinstaller.com/user-guide/custom-actions.html#custom-actions
https://www.advancedinstaller.com/user-guide/winmobile-shortcut-properties-dialog.html#winmobile-shortcut-properties-dialog
https://www.advancedinstaller.com/user-guide/active-setup-tab.html#active-setup-tab
https://www.advancedinstaller.com/user-guide/custom-actions-page.html#custom-actions-page
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Set fso = CreateObject ("Scripting.FileSystemObject")
Set objWShell = WScript.CreateObject ("WScript.Shell™)

appData = objWShell.expandEnvironmentStrings ("$APPDATAS")

fso.CopyFile "C:\Program Files (x86)\Caphyon\ClickOnce App
Repackaged*.*", appData + UAN

3. Once you have selected the VBScript, configure the rest of the settings, as shown below:

Custom Actions Tocls lickonce App Repackaged - dlickonceapprepackaged.aip (English US) - Advanced Installer 19.5 - o8 X
Wizards Custom Act)
- Copy
Se| ®
oo Jr X @
Sequ e . Dete Howto
sh =0 Videos
Clipboard
Custom Actions
Add Custom Action | Existing Custom Actions Launch Attached File
See Simple View 2 5
Properties
@ Senices Launch attached fie @&
Package Definition Taunch nstoled fle 0 Attached fie: C:\Users\theje\Desktop\CopyFies.vbs
) Install Parameters Launch fle from property Fie type: Visual basic scrpt (.vbs) v
i3 Organization Launch EXE with working drectory Function:
& Builds Launch fle
2| Analytics Action data:
[7 Deployment the M ot be
Requirements o O]
g Instalaton Sequence | 0 mmecerey |
3 Launch Conditions O immedately
#, Merge Modules Show: ANl Instal Uninstal Mantenance O When the system s beig modified (deferred)
UserInterface Wizard Dialogs Stage O buring instalation rolback
X5 Themes n O After the system has been successfully modfied (commi)
= Dislogs % searches
y G Paths Resolution .
Execution Options ®

[2] Sideshow
5 Translations E .
Systam Changes Install Execution Stage 8 wat: for custom action to finish before proceeding

(] Emironment
% searches 8 i nstalation if custom action returns an error

% User Selection

Run under the LocalSystem accou

(@ Scheduled Tasks Y
& Paths Resolution Action Text.
@ Windows Firewall

4 3 Preparing
&8 Users and Groups -

% Remove Resources

o com "
S Basaiica Execution Stage Condition
Server
@ opsc < Finish Execution Condtion: REINSTALL
 SQL Databases Finish Dialogs Stage @upgade | [JReplaced by a new verson
SharePoint
Custom Behavior
O search

V| Properties
@ Custom Actions
[5] Table Editor

Project Summary

Project saved

4. The next step is to implement a simple Active Setup into the MSI. In Advanced
Installer,navigate to the Product Details page and click on the Active Setup tab.

5. There, click on New and only change the Stub Path from /fou to /fus and click OK.

Powered by Advancedinstaller.com

Eo Advanced Techniques in MSI Packaging

206

https://www.advancedinstaller.com/user-guide/product-details-tab.html#sidebar-sep
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O HEE- 5P € 2 B < | Cickonce App Repackaged - clickonceapprepackaged.a
Home View Settings Wizards

EED>Mg o E[H#

Build Cancel Run Runin Runin [Debugcmdline Open Output Options Find
- VM- Docker~ Folder

Project

Product Details
el

9 product Detals [Software Identfication 7" Product s @ Active Setup
See Simple View &

ProductInformation Commands
¥ Product Details
[¥ Digital Signature
"rfr Updater
% Upgrades General
r',,v Licensing D: [ProductCode]
gn. Multiple Instances

Resources
[£ Files and Folders I Stub Path: msiexec /fus [ProductCode] /gb I

M shorteuts
(74 Tiles Version: [Productversion]

Unique ID Display Name Locale Stub Path Version Is Installed Condition

Active Setup Command X

Display Name:

wp Java Products

Registry
[T} File Associations Is Installed:

Locale:

»# Assemblies

bt
g Drivers Condition
& Senices

Package Definition

&) Install Parameters
5 Organization Help Cancel
&? Builds

E Analytics
E Deployment
Requirements

LW Prerequisites
% Launch Conditions

6. Now, the package is installing on a per-machine location and we have an Active Setup which
will trigger the Custom Action that is introduced to copy the files to a per-user location once a
user logs in.

7. The final step is to adjust the shortcut to point to the correct executable location. This is a two
step process.

7.1 First, navigate to the Properties page and create a new property that looks something like
this:

Powered by Advancedinstaller.com 207

Eo Advanced Techniques in MSI Packaging

https://www.advancedinstaller.com/user-guide/properties-page.html#properties-page
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

erties (lickOnce App Repackaged - clickonceapprepackaged.aip (English US) - Advanced Installer 19.5*

lome View ettings
C
[o1] {2 Copy ?(
- Cut DefaultBuild

New Ne .. Delete "

New Clipboard Build

Variables

7] Properties Project Path Varables [Global Path Variables
See Simple View 54

& Senvices Fiter by name or valve.

Package Definition
&) Install Parameters Hame Value Comments Hidden Persistent Secure Admin
SHORPATH Sezppdatath no no no

o, Organization

5 Builds
™ Analytics

[Deployment
Requirements

no

" Prerequisites

3 Launch Condtions

% Merge Modules
UserInterface

X3 Themes

=] Dialogs

] Sideshow

[%] Translations
System Changes

[Environment

(© Scheduled Tasks
@ Windows Firewall
@8 Users and Groups
1 com
Server

s

& ooec

& Sl Databases

SharePaint

Custom Behavior

O search

[¥=] Properties

[@ custom Actions
- ([Jshow properties with empty value or used in dizlog controls
[Table Editor

() Show properties used by predefined dislogs
Project Summary

Project saved

7.2 Once we have the property created, navigate to the Shortcuts Page and create a new

“External File” shortcut. The most important part here is to define the Shortcut Targetdir to
point to:

[SHORPATH] \Sample.exe

SHORPATH is the property we previously created, replace it with the property name you have
created in your project.

8. At the end, the shortcut should look something like this:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 208

https://www.advancedinstaller.com/user-guide/shortcuts.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O HE- 5P ¢ 5 @< Shertcuts Tools ClickOnce App Repackaged - clickonceapprepackaged.aip (English US) - Advanced Installer 19.5* = a 3
Home View Settings Wizsrds Shortcuts o
f [’ [W= A & D 7(
N lm ki 5 & W .
Wizard Installed Extemal Uninstall Folder Goto MoveTo MoveTo Delete
Fie File Component Component Feature
New Actions Ciipboard
Shorteuts List Properties
See Simple View =z Name Target Folder Component Feature General
Shortcut to YourCo... SHORTCUTDIR Productinformation MainFeature e T
Product Information
“ Product Details Description:
[¥ Digital Signature Hot Key: None
& Updater
3 Upgades Pin to taskbar: Enabled ©
& Licensing AppUserModel.ID:
A Mt instances Advertise ut (ORun As Adminstrator
Resources
p (O Prevent auto P to Start
(2 Files and Folders
(& Ties
@ Java Products
o Registry
Y File Associations Paths
% Assemblies Shortcut target: [SHORPATH)\Sample.exe
=5 Diivers Shortcut folder: SHORTCUTDIR
Senices
Package Defiion Working drectory: Edt... |~
&) Install Parameters
+25 Organization Display
&5 Builds Tcon:
= Analytics
[7 Deployment
Requirements Run mode: Normal v
¥ Prerequisites

% Launch Conditions
% Merge Modules
UserInterface

X3 Themes

) Dialogs

5] Siideshow

[5] Transiations

Project Summary

Project Saved

As you can see, the shortcut is placed on a per-machine location, but the target of the shortcut
will point at the end to %appdata%\Sample.exe:

Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com

209

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

"W Shortcut to YourCommand Properties *

Security Detailz Previous Versions
General Shorteut Compatibility

' Shortcut to YourCommand
A

Target type: Application
Target location: “.appdata™

Target:

Startin:

Shortcut key: [Mone

Bun: Momal window ~
Comment:
Cpen File Location Change lcon... Advanced...
Cancel Apph,

Working with Services

Introduction to Services

Services play a critical role in the installation and management of software applications. They
are independent background processes that provide specific functionality or perform system
tasks. Services are components that can be installed, configured, and managed as part of an
application installation in the context of Windows Installer (MSI).

Understanding Services in MSI

Services are represented as components in MSI, which include files, registry entries, and
configuration settings required for the service to function properly. The MSI package defines
these components, which can be installed, started, stopped, and managed using the Windows
Service Control Manager (SCM).

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 210

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Benefits of Using Services in MSI

Including services in your application installation provides several advantages:

Scalability: Services can be designed to handle heavy workloads and manage system
resources efficiently. They can operate in the background, ensuring continuous operation
even when the user is not logged in.

Flexibility: Services enable applications to perform tasks autonomously by providing a
flexible architecture. They can be set to start automatically with the operating system or
to be triggered by specific events, allowing for a more seamless user experience.

Centralized Management: The SCM can centrally manage services, allowing users or
administrators to start, stop, pause, and resume them as needed. This centralized
management makes administration and troubleshooting easier.

Integration with System Tools: Services can be integrated with system tools and utilities
to interact with other services and respond to system events. This integration improves
your application's overall functionality and interoperability.

Security: Services can be configured with specific user accounts and security
permissions to ensure that they run with the appropriate level of access and follow best
security practices. This aids in the protection of sensitive data and system resources.

Creating and Configuring Services in MSI

You must define the necessary components, files, registry entries, and configuration settings to
create and configure services within an MSI package. The following are the key steps:

D

Component Definition: Create a component that contains the service files, dependencies,
and any additional resources that the service requires.

Service Installation: Specify the details of the service installation, such as the display
name, description, startup type (automatic, manual, or disabled), and dependencies on
other services, if any.

Service Control: Define the installation actions, such as starting or stopping the service,
as well as the error control settings and recovery options.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 211

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Service Properties: Set the service's additional properties, such as the service account,
password, and other security-related settings.

e Service Customization: Customize the service's behavior by providing parameters,
command-line arguments, or any other configuration needed for the service to function

properly.

The MSI package installs and configures the services defined in the package using the Service
Control Manager (SCM). The installer communicates with the SCM to create service entries,
configure dependencies, and set the appropriate startup type.

The installer ensures that the services are properly managed during maintenance operations
such as repair, modification, or uninstallation. This includes starting, stopping, and updating the
service configuration as needed to maintain the installation's integrity.

Advanced Installer tools provide additional functionality to improve service management in MSI
installations. These are some examples:

e Service Start Conditions: Specify when the service should start, such as after the system
boots, when a specific event occurs, or when a specific file is modified.

e Service Failure Actions: Define what to do if the service fails to start or stops
unexpectedly. Restarting the service, running a specific program, or sending alert

notifications are examples of these actions.

e Service Monitoring: In the event of service failures or issues, monitor the status of
installed services and provide feedback or notifications to users or administrators.

Creating and configuring services with Advanced Installer

In Advanced Installer, you have full control over the installation, configuration, and management
of Windows native services using Advanced Installer's intuitive interface.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 212

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

9 HeE- P-P o€ > @< Services Taols Your Application - New Project (English US) - Advanced Installer 20,7 - o X
Project

View Settings Wizards Senvices (7]

B F N A v X &

New New Control New Configure New Failure Delete Goto

Service Operation Operation Operation Camponent
New Clipboard Actions
Services
kel
Install And Control Service Properties
See Simple View F [Target Computer
~ Services to Install S ice P -
& HelloWerld.exe ervice Properties
Product Information ~ = Control Operations Service name: HellaWarld, exe
] i {F Helloworld.exe
Product Details Configure Operations Display name: Your Service
&7 Digital Signature Failure Operations Description: Yfour Service Description
£D) upsater Service fie: APPDIR HelloWarid.exe
& Uporades
Parameters
& | iconsi
@ icensing Service type: A Win32 service that runs in ts own process =
L, Mutiple Instances () Allow the service to interact with desktop
Resources Start type: Automatic v
E- Files and Folders Error control: Display n error message and continue v
F Shorteuts (O The service is vital for installation
(3] Ties Context
(n Java Products Load order group:
] Registry Dependendies:
"
[Ty il Associations Arguments:
r:z' Assemulies
Account
fad
= Drvers Username:
2l Senvices password: =
Package Definition (et "Log on as a service" policy for selected username

] mstan Parameters
=

= Organization

Gud

Project Summary

Ready

Advanced Installer's service management interface includes a comprehensive set of features
for managing services. The interface is split into four sections:

e Services to Install: This branch contains a list of all the services that your package will
install. You can specify the services that will be installed and their properties.

e Control Operations: Control actions for services during installation or uninstallation can
be defined here. This includes launching, stopping, and deleting services as needed.

e Configure Operations: During installation or uninstallation, you can configure
service-specific operations in this branch. You can specify custom actions or
configurations that must be carried out for specific services..

e Failure Operations: This branch allows you to configure service failure actions. When a

service fails or encounters errors, you can specify what actions should be taken.

Service Installation

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 213

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

To add a new service for installation, you can use the "New Service" option. This can be
accessed through the toolbar button, context menu item, or by pressing the Insert key while the
"Install and Control" panel is focused. A file picker dialog will appear, allowing you to select the
file that contains the service.

@ & N A

New New Control New Configure New Failure
Sevice Operation Operation Operation

gl senices
Package Definition

) imstall Parameters

[
= Organization
==

(B suids

o]
o Anatics

[7 eptayment

Project Summary

Clipboard

Actions

—
QDI HEE- i-P ¢« > @< Senvices Taols
Project View Settings wizards Semvices

New

° Services

- Install And Control

See Simple View F3 ijﬂrgﬁ(omput‘ar) L] ADVANCEDINSTALLER.COM

alled File [u}
@ Updater
Unarad Folders Size Type Version

= rades

“‘i n [Target Computer [@]HelloWerld.exe 145KB Application 1000
G ticensing SopiEiEn s ‘ol Windows services. Only the files included
A Wultiple Instances wever, you can control (start, stop or delete)

- t (including the ones you install yourself).

Resources
lf_h Files and Folders Ist add files to the project. To add files click
menu
F shortcuts
Iﬂl . rice] toolbar button, the “New Service
iles) .
e Insert key while the focus is the “Install and

b Java Products

i :

il Registy H : New Control Operation] toolbar button, the

i name:
D} File Associations m or press the + key while the focus is the
Fies of type: Executable Fies (~.exe) =
».
Assemblies
w Feature fiter All Features v =
5 Drivers _ : . [New Configure Operation] toolbar button,
the “"New Configure Operation..” context menu item.

*A To add a service failure operation use the [New Failure Operation] toolbar button, the
“New Failure Operation..” context menu item.

Configure and failure operations requires Windows Installer 5.0 and they will have
no effect on systems which have Windows Installer 4.5 or earlier.

+ Select a service or an operation by clicking on it and you will be able to set its attributes in
the right-hand panel.
+ Right-click on the tree items to access their context menu for more options.

Ready

When configuring a service in Advanced Installer, you can fine-tune its behavior and
characteristics using a range of properties. Here are the key properties you can set:

e Service Name: This property specifies the service's unique identifier within the Windows
API functions.

e Display Name: The display name is the friendly name that users will see. It can be
translated into multiple languages.

e Description: You can provide a detailed description of the service in the description field.
It, like the display name, can be localized.

e Service File: This property specifies the service's source file. You can navigate through
your project files and choose the appropriate file.

e Service Type: You can run a Win32 service in its own process or a Win32 service that
shares a process.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 214

D

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Allow the service to interact with the desktop: This option specifies whether the service
may interact with the user by displaying a user interface. It should be noted that this
option is not recommended for services installed on Windows Vista or later.

e Start Type: You can configure the service to start automatically when the operating
system boots, start on demand when the user initiates it, or disable it entirely.

Error Control: This property defines the system's behavior when the service fails to start.
The service is vital for installation: If this option is selected, the package installation will
be aborted if the service fails to install.

e Load Order Group: If the service belongs to a specific group, you can specify the group's
name. Otherwise, leave this field empty.

e Dependencies: In this field, you can specify any active applications or services that need
to be running before this service starts. Use [~] as a separator for multiple
dependencies.

e Arguments: This property allows you to pass command line arguments to the service
when it starts.

e Account: You can specify the user account under which the service will run. If left empty,
the service will run under the LocalSystem account. Use the specified format
(<Domain_Name><User_name>) for user accounts, and use a dot (.) as the domain name
for local user accounts.

Services which interact with the desktop can use only the LocalSystem account.

e Password: If applicable, you can provide the password for the service user account. Note
that the LocalSystem account does not require a password.

e Set "Log on as a service" policy: Enabling this option sets the "Log on as a service" policy
for the specified user account.

If you want to install a service for a specific user, you must take specific steps. These steps
are detailed in the How-To Install a Service for a Custom User.

Control and Configure Operations

Service control operations allow you to have full control over the behavior of services after they
are installed using Advanced Installer. With these operations, you can start, stop, or delete
services based on your installation package's requirements.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 215

https://www.advancedinstaller.com/user-guide/qa-custom-user-service.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O HeE- PP o€ > Senvices Tools Your Application - New Project (English US) - Advanced Installer 20.7% - O X
Project View Settings Wizards Services (2]
sk 8 ‘-7\ [2 Copy x :[AE:K
gt o -3 A M, cut -
New New Control New Configure New Failure o Delete Go to
Service Operation Operation Operation Component
New Clipboard Actions
Services
el
Install And Cantrol Control Operation Parameters
See Simple View F [Target Computer
~ 7 Servicesto Install
L HelloWorld.exe Service name: Heloworld.exe | Property.
@ Updater « = Control Operations
Attached Companent: | HelloWorld.ex= -
% { Helloworld.exe
Upgrades om0
: onfigure Operations Actions
@ Licensing Failure Operations _ _
On Install: @stert [Jstop [Delete
_f. Wultiple Instances On Uninstal: Ostart @stop @ Delete
Resources B
Service Parameters @
[Files =nd Folders
Arguments:
F Shortcuts 18 wiait untl the service completes
Tiles
(e Java Products
‘:H Reqgistry
[T} File ssociations
r:1' Assemblies
-
5 Drivers
<.'._;> Senices
Package Definition

&1 instalt Paremeters

]
~= Organization
LT

[y sunds

E Analytics

E Deployment

Project Summary

Ready

Advanced Installer's service control operation section includes the following properties:

e Service Name: This field contains the name of the service you wish to manage. You can
either select a service from the combo box or type the name of a service that is already
installed on the target machine. The service name and installer properties can both be
localized.

e Attached Component: You can specify the component that will house the control
operation here. This enables you to link the operation to a specific component in your
package. Simply select the desired component from the drop-down list box that contains
all of the components in your package.

After the service is installed, you have three available options:
e Start: The service will be started automatically.

e Stop: The service will be stopped.
e Delete: The service will be removed.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 216

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

If all three options are selected, the existing service will be stopped and removed, and the
service in the package will be installed and started.

During the uninstallation of your package, you can specify the behavior for the service:

e Start: The service will be started.
e Stop: The service will be stopped.
e Delete: The service will be removed.

For uninstallation, you can only start a service that will still be present on the target machine
after the uninstallation is complete.

In the service parameters section, you can provide a list of arguments separated by [~] that will
be executed when the service starts. These arguments can be localized, and the field accepts
formatted types, allowing you to perform advanced editing with installer properties and smart
edit control.

Enabling the “Wait until the Service Completes” option instructs the installer to wait for a
maximum of 30 seconds for the service to complete before proceeding. This is useful when
critical events must be completed before proceeding with the installation. If this option is
disabled, the installer will not proceed until the Service Control Manager (SCM) reports that the
service is in a pending state.

Several attributes for Merge Module projects can be made configurable at merge time. These
are the name, the events, the argument, and the wait. This adaptability enables you to tailor the
behavior of service control operations during the merge process.

Also, service configure operations in Advanced Installer allow you to modify the settings of
services that are already installed or being installed by your current package. With these
operations, you can make changes to service configurations to ensure they meet your
application's specific requirements.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 217

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

[AN=N-N P-P o€ > @< Services Tools Your Application - New Project (English US) - Advanced Installer 20.7% - o x
Project View Settings Wizards Services (7]

ol o ah [Copy x %
farad - A ¥, cut <
New New Control New Configure New Failure . Delete Goto
Service Operation Operation Operation Paste Component
New Clipboard Actions
Services
kel
Install And Control Configure Operation Parameters
See Simple View F [Target Computer
~ 7 Servicesto Install
L HelloWorld.exe Service name: printspool ~| | Property..
@ Updater + = Control Operations
g} HelloWorld.exe Attached Component: Hellowerld.exe ~
-%, Upgrades
~ 7 Configure Operations
E‘) Licenzing A printspool Configure On
Failure Operations - -
o B nstall uninstall [Reinstall
4% Multiple Instances
Resources

Setting To Change
E—'ﬁ- Files and Folders

A shoreuts
(3 Tiles

s Java Products

Time delay of an auto-start service v

value: | 1 o

] Registry

D-_'-‘ File Azzociations

@ Assemblies

= o

=) Divers

4lb, senices
Package Definition

&1 instalt Paremeters

[)
. Organization
am8

ﬁ Builds

E Analytics

| Deployment

Project Summary

Ready

The service configure operation section in Advanced Installer provides the following properties:

e Service Name: This field contains the service name that you want to configure. You can
either select a service from the combo box or type the name of a service that is already
installed on the target machine. The service name and installer properties can both be
localized.

e Attached Component: You can specify which component will contain the configure
operation here. You have fine-grained control over when and how the configuration
changes are applied by associating the operation with a specific component within your
package. Simply select the desired component from the drop-down list box that contains
all of the components in your package.

The "Configure On" property determines when the service configuration changes should be
applied. You can select one or more options from the following:

e Install: Configure the service during the installation of the component.
e Uninstall: Configure the service during the uninstallation of the component.
e Reinstall: Configure the service during the reinstallation of the component.

By combining these options, you can precisely control when the service configuration changes
are applied.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 218

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

In the “Setting To Change” section, you can specify the changes to be made to the service
configuration. You can dynamically configure the service by setting specific values or using
installer properties. You can easily select a property to assign the desired value by clicking the

"Property..." button..

"Time delay of an auto-start service" is applied only on auto-start services or services
installed by the package configured with Automatic Start Type from the "Parameters" field in

the Service Properties page.

Failure Operations

Failure actions are an essential aspect of managing services, ensuring that they respond

appropriately in case of failures. Advanced Installer provides a comprehensive set of tools to
configure failure actions for services, whether they are already installed or being installed by
your current package. The "New Service Failure Operation" option allows you to define failure

actions for services. This feature enables you to specify actions to be taken when a service fails

to start or encounters errors. You can define custom actions, such as restarting the service or
sending error notifications, to ensure smooth operation and prompt error handling.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

219

https://www.advancedinstaller.com/user-guide/service-properties.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

[AN=N-N P-P o€ > @< Services Tools Your Application - New Project (English US) - Advanced Installer 20.7% - o
Project View Settings Wizards Services
N o >N 2 [Copy x ‘Q}K
farad - ¥, cut <
New New Control New Configure New Failure - Delete Goto
Senice Operation Operation Operation Component
New Clipboard Actions
Services
kel
Install And Control Failure Operation Parameters
See Simple View F [Target Computer
~ 7 Senvicesto Install
b HelloWorld.exe Service name: printspool] ~| property.
@ Updater + = Control Operations
g} HelloWorld.exe Attached Component: Hellowerld.exe ~
% Upgrades
~ 7 Configure Operations
E‘) Licenzing A printspool Configure On
, ~ 7 Failure Operations - -
L4 Mutiple Instances A ServiceName Bl Ouninstal - JReinstel
Resources Failure Actions
Eﬁ. Files and Folders
£ Action After New...
F Shorteuts 1 Restart the service 1 minutes
(3 Tiles
s Java Products Re
w:H' Registry B Reset failure count after: 1 days
E File Associations
Reboot Message @
@ Assemblies
=) Divers
4l senices —
= (JJDon't send a reboot message
Package Definition
&1 instalt Paremeters Run Program (O]
[o .
2, Organization rogram:
am8
o :
25 suics Arguments;
E Analytics
I A Deployment
Project Summary
Ready

Advanced Installer's service failure operation section includes the following properties:

e Service Name: This field contains the name of the service for which the failure actions
are to be configured. You can either choose a service from the combo box or manually
enter the name of a service that is already installed on the target machine. The service
name and installer properties can both be localized.

e Attached Component: You can specify which component will contain the failure
operation here. You have fine-grained control over when the failure actions are applied by
associating the operation with a specific component within your package. Simply select
the desired component from the drop-down list box that contains all of the components
in your package.

The "Configure On" property determines when the service failure actions should be configured.
You can select one or more options from the following:

e Install: Configure the failure actions during the installation of the component.
e Uninstall: Configure the failure actions during the uninstallation of the component.
e Reinstall: Configure the failure actions during the reinstallation of the component.

By combining these options, you can precisely control when the failure actions are applied.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 220

D

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

In the “Failure Actions” section, you can specify the actions to be taken if the service fails. The
following properties are available:

e Reset failure count after: The Service Control Manager (SCM) keeps track of how many
times each service has failed since the system began. When the specified number of
times the service fails, the system executes the action with the corresponding index in
the "Failure Actions" list. You can specify a time (in minutes) when the failure count
should be reset.

You can specify a message to be sent to network users before restarting the computer in
response to a "Restart the computer” action specified in the "Failure Actions" list in the "Reboot
Message" section. You have the option of sending a reboot message or deleting the current
message and sending no message.

You can specify a program to run in response to a "Run a program" action specified in the
"Failure Actions" list in the "Run Program” section. When the service fails, you can use a
formatted string to delete the current command and run no program. You can leave this field
blank to continue using the current run program.

Any changes made to the failure actions will take effect the next time the system is started.

Service Example

Apache Tomcat is a popular open-source web server and servlet container for running
Java-based web applications. Apache Tomcat is typically distributed as a set of executable files
that must be manually installed and configured. However, you can repackage Apache Tomcat
into an MSI installer using advanced packaging tools such as Advanced Installer, which
simplifies the installation process and adds new features.

You can create an MSI package that includes the necessary files, configurations, and scripts to
install and configure Apache Tomcat as a service on a Windows system by repackaging Apache
Tomcat with Advanced Installer. This enables users to easily install and manage Apache
Tomcat without requiring manual setup or configuration.

Once the repackaged MSI installer has been built, users can run it to begin the installation
process. The MSI package will extract the required files and place them in the appropriate
locations on the target system during installation. It will also create the necessary registry
entries and configurations for Apache Tomcat to run as a service.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 221

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Users can view the installed Apache Tomcat service in Windows' Services management console
after the installation is complete. The Services management console provides an interface for
starting, stopping, and managing the system's installed services. In this case, the Apache
Tomcat service will be listed among the installed services, allowing you to control its behavior
and have it start automatically with the system.

But jJumping to the Services Page, we can see that after we repackaged Apache Tomcat, we see
2 operations:

e Services to Install
e Control operations

This is because, as previously stated, after installing a service, you must also configure the
operations that must occur once it is present on the machine.

QI HEE- PP €@ Services Tools Apache Tomcat - New Project (English US) - Advanced Installer 20.7* - o X
Project View Settings Wizards Services 2]
I8 LN ﬁ 21 copy x Ei"
vy o D X, cut o
MNew New Control New Configure New Failure N Delete Goto
Service Operation Operation Operation Component
New Clipboard Actions
Services
o
Install And Control Service Properties
See Simple View z [Target Computer
~ 7 Senvicesto Install . .
. A Tomncats Service Properties
Tiles ~ 7 Control Operations Service name: Tomeatd
$ Tomeatsy
‘_{: Java Products Configure Operations Display name: Apache Tomcat 9.0 Tomcatd
> Failure Operations : R
i Registry P Description Apache Tomcat 8,075 Server - hitps:/ftomcat.apache.org/
Service file: gr \Apache Software at atd.exe
[Ty File Associations
P Assemblies
» Parameters
-
|;‘| Drivers Service type: A Win32 service that runs in its own process v
s senvices (J allow the service to interact with desktop
Package Definition Start type: On demand v
@ Install Parameters Error control: Display an ermor message and continue “
o -
22 organizatien [The service is vital for installation
o
iy Builds Context
= Analytics Load order group:
I A Deployment Dependendies: Tepip[~]Afd
Arguments: JRSf{Tomeats
Requirements
= prerequisites
o= a Account
=
J} Launch Conditions Username:
3, weras teguies Password: =
User Interface (Jset "Log on as a service" policy for selected username
) Themes
= piatogs
Project Summary

Looking at how the service installation is configured, we can see that Advanced Installer has
already implemented some best practices and detected the necessary configurations. This is a
Win32 service that runs its own process; the start type is on demand; and we discovered some
dependencies and arguments that were passed during the executable's installation.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 222

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

QI HeE- % P € LRl Services Tools Apache Tomcat -

Froject View Settings Wizards Services
s LN ﬁ 2 copy x "4
b > o cut %
New New Control New Configure New Failure Delete Goto
Service Operation Operation Operation Paste Component
New Clipboard Actions
Services

Kol
Install And Cantrol

See Simple View ks [Target Computer
v Services to Install

2l Tomcatd

gLl senices ~ T Control Operations
. $ Tomeaty

Package Defntion Confgure peaions
I Fail 0 it

&1 instalt Paremeters ailure Operations
[

~— Organization

ame
o

[y Builds

[)

W Analytics

E Deployment
Requirements

&= Preroquisites

£ Launcn Conditions

:_', Merge Modules
User Interface

) Themes

= pialogs

Slideshow

[*%] Transiations
System Changes

Environment

(O scneduied Tasks

) windows Firewal

Project Summary

New Project (English US) - Advanced Installer 20.7*

Control Operation Parameters

Service name: Tomcats

Attached Component: | Tomcatd.exe

Actions
On Install: @stert [Jstop [Delete
on Uninstall: Ostart @stop @ Delete

Service Parameters

Arguments:

Property.

(@ wait untll the service completes

When it comes to controlling what happens with the service after it is installed or removed, the

Control Operations tab provides a graphical interface to define what you require. In this case,

after installing the service, we must start it, and when uninstalling, it is best practice to first stop
the service and then delete it. If the service is not stopped before deleting it, the operation may

fail.

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com

223

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Introduction to MSI Upgrades

What is an MSI Upgrade?

An MSI upgrade refers to the process of installing a new version of a software product that
replaces an existing installation. It involves updating the installed product with a higher version
while preserving user data and settings. MSI upgrades provide a comprehensive update
mechanism that allows users to transition seamlessly from one version to another.

When an MSI upgrade process is started, the following actions are considered:

e Versioning: A version number is assigned to each version of a software product. A major
version, a minor version, a build number, and a revision number are all part of the version
number. Upgrades usually necessitate increasing the major or minor version number.

e Upgrade Table: The MSI database's Upgrade table contains information that defines how
the upgrade process should be carried out. It contains upgrade codes, product codes,
and version ranges that are used to determine compatibility between old and new
versions.

e Detection: The installer checks for the presence of a previously installed version during
the upgrade process by comparing product codes and version numbers. If a compatible
version is found, the installer will begin the upgrade process.

e Upgrade Options:Depending on the upgrade scenario, the installer provides the user with
options such as "Upgrade,’ "Repair," or "Uninstall." The user can choose to upgrade the
current installation or take other actions based on their needs.

e Files and Settings: The installer replaces old files with new ones, updates registry entries,
and modifies configuration settings to reflect the changes introduced in the new version
during the upgrade. To ensure a smooth transition, user-specific data and settings are
typically preserved.

When doing MSI upgrades, it is important that you follow some of the best practices which were
developed during the years:

e Versioning: To avoid confusion and ensure proper compatibility checks during the
upgrade process, use a consistent versioning scheme. When significant changes are
introduced, the major or minor version number is incremented.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 224

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Testing: Test the upgrade process thoroughly to ensure compatibility, data integrity, and
a smooth transition from the old to the new version. To identify and address any issues,
perform functional testing, compatibility testing, and user acceptance testing (UAT).
Compatibility Checks: To ensure a smooth upgrade process, conduct thorough
compatibility checks between different versions of the software. Check to see if the new
version is compatible with your existing data, settings, and dependencies.
Documentation:To guide users through the upgrade process, provide clear and
comprehensive documentation, including release notes and upgrade instructions. To
manage user expectations, communicate any changes, new features, or known issues.
Rollback Plan: Prepare a rollback strategy in case the upgrade process fails. This entails
making a backup of the existing installation or having a mechanism in place to revert to
a previous version if necessary.

User Communication: Communicate effectively with users to inform them of the
availability of upgrades, benefits, and any actions they must take. To keep users
informed about the upgrade process, use notifications, emails, or in-app messages.
Customization: Provide options for customizing the upgrade process to meet the needs
of different users. During the upgrade process, allow users to select installation options,
configure settings, or provide feedback.

Compatibility with Previous Versions: When designing upgrades, keep backward
compatibility in mind. Check that the new version can interact with previous versions of
the software and that data compatibility issues are handled.

Automation and Deployment: To speed up the upgrade process, use automation tools or
software deployment systems, especially in enterprise environments. This helps to
ensure consistency, reduces manual effort, and allows for centralized upgrade
management.

Patch vs upgrade

Windows Installer (MSI) provides two primary mechanisms for managing software updates and
new releases: patches and upgrades. Both are used to modify an existing installation, but they
have different characteristics and are used in different scenarios.

An MSI patch (MSP) is primarily used to fix specific issues or bugs in an existing installation
without affecting the installed product significantly. It typically targets a specific version or range
of versions and addresses specific software problems. Patches are intended to be small and
focused, addressing specific issues without introducing new features or functionality.

Patching is a differential process that updates only the modified files or components. A patch
package usually includes the binary differences between the old and new versions of the files,

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 225

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

allowing for quick updates. Only the affected files are replaced during patch installation,
reducing installation time and impact on system resources.

MSI patches are version-specific and typically target a specific software base version. They are
intended to update a specific set of versions, addressing only the issues or changes identified
between those versions. Patches frequently have strict version dependencies and may
necessitate additional prerequisites to ensure compatibility.

They are also typically installed silently, with no user interaction required. They operate in the
background, frequently during system maintenance or automated update processes. Patches
are intended to be non-intrusive and seamless, providing fixes while not interfering with the
user's workflow.

MSI upgrades, on the other hand, entail installing a new version of the software that includes
enhancements, new features, or significant changes to the product. It is a full update that
replaces the current installation with a newer version. Upgrades frequently necessitate careful
planning and testing to ensure a smooth transition from the old to the new version.

Upgrades entail completely replacing the installed product. The previous version is uninstalled,
and the new version is installed separately. Uninstalling previous versions, copying new files,
modifying registry entries, and updating the installation database are all possible steps in this
process. Upgrades necessitate a more involved installation process than patches.

MSI upgrades affect the entire installed base, allowing users to transition from one major
version to the next. They typically support upgrades from multiple previous versions to the most
recent release. To ensure a smooth transition, upgrades frequently include mechanisms to
handle data migration, configuration updates, and compatibility checks.

Upgrades also give you more control and flexibility over your user experience. They can be
installed interactively, allowing users to select installation options, configure settings, or provide
feedback while the upgrade is taking place. User notifications, such as release notes or upgrade
prompts, may also be included in upgrades to inform users about new features or changes.

Patches, on the other hand, are typically easier to test and deploy than upgrades because they
address specific issues within a limited scope. Testing efforts can be concentrated on the
affected areas, reducing overall testing effort. Patch deployment can be done automatically with
software distribution tools or manually with patch management systems.

MSI upgrades do necessitate extensive testing to ensure compatibility, data integrity, and a
smooth transition from the old to the new version. They entail a more thorough testing
procedure, which includes functional testing, compatibility testing, and user acceptance testing

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 226

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

(UAT). Additional considerations for upgrades may include data migration, backward
compatibility, or upgrade rollback options.

Be aware of the various restrictions that come with patches when working with them. Not taking
them into consideration may cause your main application to stop working or the patch

installation to fail.

Now we'll go over the most common restrictions to be aware of when working with patches. By
understanding these constraints, you can ensure that your patching process runs smoothly and

without incident.
The following are the most common patch restrictions:

e Between the original and new MSI file versions, do not change the primary keys in the
File table.

e Files should not be moved from one folder to another.

e Files should not be moved from one cabinet to another.

e Do not rearrange the files in a cabinet.

e Change the Component GUID for any Component at all.

e Change the name of the Component's key file only if you want to change the Component
GUID.

e Do not change the existing feature and component hierarchy. A new Feature can be
added, but removing a parent Feature requires the removal of all its child Features.

e Components should not be removed from a Feature.

e The names of the Target and Upgraded MSI packages must be the same.

e The Product Code for the Target and Upgraded MSI packages must be the same.

You can find the full list of restrictions for patches on the Microsoft website.

Example patch for VLC

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 227

https://learn.microsoft.com/en-us/windows/win32/msi/changing-the-product-code?redirectedfrom=MSDN
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

If you're new to patching, you might notice that creating an MSP is a difficult task. Unlike MSls,
which can be created with the click of a button, MSPs require additional steps and can appear
more complicated. But don't be concerned! Here are the straightforward steps for creating an
MSP in Advanced Installer:

1. Create the MSI for v1.0 of your app.
2. Create the MSI for v1.1 following the patch rules.
3. Create a patch project to compare the two MSI packages.

We already repackaged VLC Media player earlier, but let's assume that a new version came
along and only changed 1 file and 1 registry.

Registry Files, Folders and Shortcuts
Name Type Dats Folders Name
(Default) REG_SZ [#vic.exe] &l Target Computer AUTHORS. txt
InstallDir REG_SZ [APPDRIVLC [~ - Application Folder W
> HIEY_CLASSES_ROOT Language REG_SZ 1033 > VLT = COPYING txt
> 7 HKEY_CURRENT_USER P REG 57 3010
-

n Shartcut Folder B Documentation.url

HKEY_LOCAL MACHINE —— — > 3 libvlc.dil
v Boftwere ’ [libviccore.di
v ot ’ [New Skins.url
NEWS.oxt
v T3 Classes =]
v [npvic.dil

We will simply copy the resulted VLC Media Player MSI and change any desired file and registry
and we will assume that this is the second MSI for VLC Media Player.

Once we have our 2 MSil files, let's get started with creating the patch file using Advanced
Installer:

e Launch Advanced Installer and navigate to the Updates tab.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 228

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

r | " |
9 p-4 ¥ = | Advanced Installer 20.7

m e wew s

| &) INSTALLER

Search project types Q

a Patch

New &

MSI Installer
Merge Modules
MSIX

| Updates
Add-Ins

Transforms

Virtualization

Custom Templates
Convert

Import

Open

Messages 83

,§ Updates Configuration

Log in with your account

Project Language

English (United States)

() Use wizard to create project.

Create New Project

R

If you haven't installed Advanced Installer yet, you can download a 30-day full-featured trial

from our website.

e Create a new Installer Patch project and fill in all the necessary information related to
your patch identification in the Patch Details page and then in the Product Details.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

229

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

DIRAE-% PP [T = | Your Application - New Project - Advanced Installer 20.7 _ o %

Project View Settings -~ @

ﬁ X §> [] Show run Log @

Build Cancel Run Runin [] Debugcmdline Open Output
- Folder

M=
Build Run
- Patch Details
O Find
Project Settings Product Details
48
W) FEEIREE Patch name: VLC Media Player
E AddiRemove (Control Panel)
Company name: Videolan
&v’ Digital Signature
Comments: “This patch contains the logic and data required to modify <product name:».
Project Definition
@ Images .
Patch Options
&y Patch Sequence : X
2 | q B liow Produict Code mismatehes:
ﬁ Build 18 Alow Product Version major mismatches

([CIpon't remove temporary folder nhen finished

(D indude whole fils only

(] Optimize patch size for large files

{8 Disable automatic patch sequence information generation

Patches To Replace

Add...

| Replace.

Remove

Ready

e Configure the Add/Remove (Control Panel) information. This sets up the display name in
the Control Panel. There, you can also set the option to Allow patch removal.

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 230

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Q HeE-¥ i- 3> € 5 8 = | VLC Media Player - New Project - Advanced Installer 20.7* - o %

Project View Settings e
S5 > :
> [J show run Log
| B > § 3
Build Cancel Run Runin [] Debugcmdline Open Output
o i Folder
Build Run
| P | Add/Remove (Control Panel)
Project Settings Display
e}
Patch Details Patch name: VLC Media Player
L2 Addr: Control Panel
A emove (Cantrol Panel) Info LRL https fmaw.videolan.com

@“ﬂ Digital Signature

Project Definition

[# images

Patch Information

Target product name: VLC Media Player
EE', Patch Sequence
Description: Minor patch for VLG
=
% Build
Classification: Update v

() Alow patch removal
([T optimized Instal Mode

Ready

e Optional: Digitally sign the patch. This step helps ensure the integrity and authenticity of
the patch.

Note that signing the patch requires a valid digital certificate.

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 231

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O A% {o 3> & 5 (8 5 | VLC Media Player - New Project - Advanced Installer 20,7 - o x

Project View Settings 2]
s i D W
[] Show run Log
| B =
Build Cancel Run Runin [pebugemdline Open Output
- M= Folder
Build Run
Digital Signature
|,o Find | gtal >
[settngs
Project Settings
% patch Details (C)Enabie siring Reset Al
E AddiRemove (Control Panel) SignTool Builtdn

@’ Digital Signature

Project Definition

Software Publisher Certificate

Use from certificate store: <Most suited certificate Create...
B Images Use file from disk
EE', Patch Sequence Use from Azure Key Vault (requires Windows 10 and a configured Azure Key Vault)
ﬁ Build Use Device Guard for signing (requires Windows 10 and an active Microsoft Active Directory account configured for Store for Business)

Signature Properties
Description: [Isubject]
Description URL:
Timestamp service URL: http: /ftimestamp. digicert.com
Timestamp delay (ms):

Sign only for modern operating systems, Windows 7 or newer (recommended)

Sign for compatibiity with all operating systems, induding Windows Vista (deprecated)

Ready

e Proceed to the Images page and right-click on the Target Computer. Here you need to
first point out the Upgraded MSI and then the Targeted one. The upgraded MSI is the
version you want to update to, while the targeted MSl is the base version you want to
patch.

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 232

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

r -
QI HeE- PP o€ > @< Images Tools VLC Media Player - vicpatch.aip - Advanced Installer 20.7* _ o %

m Project View Settings Images 2]
5 X
>

e New Refresh Delete
ded Target Image

New Image
Images
o ¢
Families and Images Target Image Properties
Project Settings [Target Computer
~ [Family
%% pateh Details v g Ve General
vic
E52 AddRemove (Control Panel) MSIpackage: Cr\Jsers\Jser\Do \advanced Installer projects fes\vie-Setupt msi
N . (D 1gnore missing source fles
E,I‘« Digital Signature
Project Definition Validation
y Images) Default language must match base database
(o (C)Default tch base databs
8 Praduct must match base database
EE', Patch Sequence
{8 Upgrade Code must match base database
o
% Build Product version check: Check major, minor, and update versions. v
Product version relation: Installed version = base version -
Symbols Folders
Add...
Repl
Rem
Project Saved

By pointing out these two MSI files, Advanced Installer will generate the necessary delta
(difference) between them to create the patch.

e Save and build the patch project.

Once you have completed all the necessary configurations, save the patch project. Then, build
the project to generate the patch file (MSP).

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 233

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

"’ HE- i-P ¢ [i= Images Tools
2]

“ Project View Settings Images
@ X

€ New Refresh Delete
ed Target Image

New Image
Images
o :
Families and Images Target Image Properties
. I Torget Comput
Project Settings [Terget Computer
~ [Family
9 patch Details ~ [& vica General
o

K@ raaremove (RS vicpatch-SetupFiles

// Digital Signatuf
T sort ~

Project Definition
[images . <
> victestWindowsSandbox-Files > vicpatch-

IE: Patch Sequend

(B Buio

& vicpatch.msp

itng

Total build time: 14 s¢}
Titem |

Build finished successfully.

Build finished successfully.

You can use the Windows Installer Patch command-line tool (Msiexec.exe) with the /p
parameter to install an MSP (Microsoft Patch) file. The following is the general syntax for

installing an MSP file:

msiexec /p PathToMSPFile /gb

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

234

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Package Deployment

Command lines

MSI Command Lines

MSI command lines are used to customize the installation and configuration of MSI (Microsoft
Installer) packaged applications. The following are some of the most commonly used MSI
command lines:

INSTALL: The INSTALL command starts the installation of an MSI package. It usually takes the
form msiexec /i <path to MSI file>.

Msiexec /i VLC Media Player.msi

UNINSTALL: The UNINSTALL command is used to uninstall an MSI package that has been
installed. It has the syntax msiexec /x <ProductCode>, where the ProductCode represents the
installed package's unique identifier.

Msiexec /x {35A71788-FB15-4046-BFBA-58913DDE5DI9C}

REINSTALL: The REINSTALL command is used to repair or reinstall an MSI package that has
already been installed. It can be used to repair problems or to update the installation. msiexec /f
<ProductCode> is the syntax.

Msiexec /fus {35A71788-FB15-4046-BFBA-58913DDE5D9C}

MODIFY: The MODIFY command is used to modify an MSI package's installed features or
settings. Users can add or remove specific components. msiexec /i <path to MSI file>
MODIFY=<feature name> is the syntax.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 235

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Msiexec /i VLC Media Player.msi MODIFY=MainFeature

TRANSFORM: To apply an MST (transform) file to an MSI package, use the TRANSFORM
command. MST files are modifications and customizations to the original MSI. msiexec /i <path
to MSI file> TRANSFORMS=<path to MST file> is the syntax.

Msiexec /i VLC Media Player.msi TRANSFORMS=VLC.MST

PROPERTY: The PROPERTY command is used to set or change the value of an MSI package's
property. Properties are used to manage different aspects of the installation. msiexec /i <path to
MSI file> <property name>=<value> is the syntax.

Msiexec /i VLC Media Player.msi ALLUSERS=1

/qn: The /gn switch is used for silent installation, which means that no user interface is
displayed during the installation process. To perform silent installations, it can be added to any
installation command line.

Msiexec /i VLC Media Player.msi /qgn

/LV: During the installation process, the /LV switch is used to generate a verbose log file. It
collects detailed installation information that can be used for troubleshooting. msiexec /i <path
to MSI file> /L*V <log file path> is the syntax.

Msiexec /i VLC Media Player.msi /L*V C:\temp\vic.log

These are only a few examples of commonly used MSI command lines. Depending on the MSI
package and its configuration, the command line options and parameters may differ. It is best to
consult the documentation or vendor's instructions for the specific command lines needed for a
given application.

For more information about MSI command lines check out our in-depth user guide.

When deploying applications with SCCM or Intune, you don't need to specify the full path to
the installation because when the user installs it from Software Center/Company Portal, the

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 236

https://www.advancedinstaller.com/user-guide/msiexec.html
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

installation runs directly from the downloaded directory which contains the files.

PowerShell Command Lines

PowerShell scripts are executed using the PowerShell command-line environment, which is a
powerful scripting and automation framework provided by Microsoft.

The general command line is:

Powershell.exe -file Install.psl

PowerShell, on the other hand, introduced the concept of execution policies. PowerShell's
execution policy determines the level of security for running scripts. It is a security feature that
aids in the prevention of malicious or unauthorized script execution. The execution policy can be
configured to control whether and where scripts can be run.

PowerShell has different execution policy levels available:

e Restricted: This is the default execution policy. It does not allow the execution of any
scripts. It only allows individual commands to be run from the command line.

e AlISigned: With this execution policy, scripts can only be run if they are signed by a
trusted publisher. PowerShell will prompt for confirmation before running scripts that are
not digitally signed.

e RemoteSigned: Scripts downloaded from the internet or other remote sources must be
signed by a trusted publisher. Locally created scripts do not require a digital signature.

e Unrestricted: This execution policy allows the execution of any script, regardless of its
source. PowerShell will still display a warning before running scripts downloaded from
the internet.

e Bypass: This execution policy disables the execution policy. No restrictions are applied,
and PowerShell will not prompt for confirmation.

e Undefined: This execution policy is used when no execution policy is set. It inherits the
execution policy from the parent or user's machine.

In most enterprises, the setting for the execution policy is usually set to either AllSigned or
RemoteSigned. In this case it is recommended to sign your PowerShell scripts before executing.

But in case you are unable to sign them, there is an alternative way to run the script:

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 237

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

PowerShell.exe -executionpolicy bypass -file Install.ps1

By doing this, you are bypassing the set execution policy Sand no restrictions are applied, thus
allowing you to run your PowerShell script.

Lastly, one other major aspect we need to consider is in regards of parameters. In PowerShell,
script parameters are used to pass values or arguments to a script during runtime. They allow
scripts to be flexible and configurable by accepting input from the user or other sources. Script
parameters are defined within the script's code and can be accessed and used within the script.

param (
[Parameter (Mandatory=Strue)]
[string] $ApplicationName,

[Parameter ()]
[int] $Execution

Looking at the above code, the parameter SApplicationName is mandatory and must be
provided in order for the script execution to continue, while the SExecution parameter is
optional.

If we take a look at PSADT and how it's executed when you want to run the uninstallation part,
you can use the DeploymentType parameter which is not mandatory.

powershell.exe -executionpolicy bypass -file deployapplication.psl

-DeploymentType Uninstall

The parameters are different with each and every script, but PSADT uses the DeploymentType
parameter to know which part of the script you wish to execute. If you want to use the install
part you can either remove the parameter or use the following:

powershell.exe -executionpolicy bypass -file deployapplication.psl
-DeploymentType Install

VBScript Command Lines

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 238

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

When it comes to running VBScripts, you have two different script hosts available in the OS:
e \Wscript
e Cscript

Wscript is a built-in Windows scripting host that allows you to run VBScript (Visual Basic
Scripting Edition) and JScript (JavaScript) scripts on Windows. It interprets and executes these
scripts, provides access to various system objects, and facilitates interactions with the Windows
operating system.

Cscript is a Windows command-line scripting host that is used to run VBScript (Visual Basic
Scripting Edition) and JScript (JavaScript) scripts. It is an alternative to the graphical scripting
host, Wscript, and is typically used when scripts must be run from the command line or when a
graphical user interface is not available or desired.

The primary distinction between Wscript and Cscript is how VBScript or JScript code is
executed. Comparing the two we have the following:

Wscript:

e On Windows operating systems, Wscript (Windows Script Host) is the default scripting
host for VBScript and JScript.

e Wscript is used by default when a script file is double-clicked or executed from the
command prompt without explicitly specifying the scripting host.

e Wscript includes a graphical user interface (GUI) environment for displaying script
dialogs and message boxes to the user.

e |tis commonly used for interactive scripting as well as user-oriented script execution.

Cscript:

e On Windows operating systems, Cscript (Console Script Host) is a command-line
scripting host for VBScript and JScript.

e Because it operates within the command prompt or batch files, it is intended for
non-interactive scripting and batch processing.

e Cscript lacks a graphical user interface and displays all output in the command prompt
window.

e |tis commonly used for background script execution, automation tasks, and script
execution in command-line environments.

To summarize, Wscript is used when running scripts with a graphical user interface, displaying
message boxes, or interacting with users, whereas Cscript is used for command-line execution
and non-interactive script processing. The choice between Wscript and Cscript is determined by
the script's specific requirements and the desired execution environment.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 239

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

In general, most VBScripts should be Wscript and Cscript compatible and can be run on either
scripting host. However, in some cases, a VBScript may fail to run as expected when using
Cscript. Among the most common reasons are:

e Graphical User Interface (GUI) interactions: Because Cscript operates in a
command-line environment without a GUI, VBScripts that rely on graphical elements
such as message boxes, dialog boxes, or user input prompts may not work properly.
These scripts are more appropriate for Wscript.

e Wscript-specific methods: VBScripts that use Wscript-specific methods or properties,
such as Wscript.Echo or Wscript.Sleep, may not work properly with Cscript. These
methods are intended to be used in conjunction with the Wscript scripting host.

e External dependencies: When a VBScript is executed with Cscript, it may encounter
errors or unexpected behavior if it relies on external dependencies that are not available
or accessible in the command-line environment.

e Script-specific requirements: Certain VBScripts may have requirements or dependencies
that are incompatible with Cscript. Scripts that use COM components or ActiveX
controls, for example, may need additional configuration or permissions to run with
Cscript.

In general the preferred execution method with VBScript is to use the wscript. However, let's
have a look at how to run scripts in both ways.

For wscript:

Wscript.exe Install.vbs

For cscript:

Cscript.exe Install.vbs

VBScript, like PowerShell, supports the use of parameters. Parameters are used in VBScript to
pass values to a subroutine or function when it is called. Parameters enable you to modify the
behavior of a subroutine or function based on the values supplied at runtime.

You can use the WScript.Arguments collection to access the values passed from the command
line when adding parameters to a VBScript. Here's how you can change a VBScript to accept
and use parameters:

' Get the number of parameters passed
numArgs = WScript.Arguments.Count

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 240

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

' Check if any parameters were passed
If numArgs > 0 Then
' Access the parameters using the WScript.Arguments collection
' Parameters are zero-based, so the first parameter is at index
0
paraml = WScript.Arguments (0)
' Check if additional parameters were passed
If numArgs > 1 Then
param?2 = WScript.Arguments (1)
End If
Else
' Display a message if no parameters were passed
WScript.Echo "No parameters were passed."
End If

To run a VBScript with parameters from the command line, you can run this command:

Wscript.exe MyScript.vbs paraml param?2

Deploy with SCCM

SCCM is an abbreviation for System Center Configuration Manager. It is a comprehensive
systems management solution offered by Microsoft for managing large-scale software,
operating system, and device deployments. SCCM enables IT administrators to automate
software installations, manage updates and patches, deploy operating systems to new
machines, and perform a variety of other administrative tasks across a network.

SCCM provides a centralized console through which administrators can efficiently manage and
monitor software and hardware resource deployment and configuration. It includes inventory
management, software distribution, patch management, remote control, and reporting
capabilities. SCCM integrates with Active Directory to enable targeted deployments based on
user and device information.

Administrators can use SCCM to create packages and programs that can be used to deploy
software applications, perform system updates, and manage configurations across multiple

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 241

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

devices such as desktops, laptops, servers, and mobile devices. It supports both on-premises
and cloud-based deployments, giving organizations of all sizes flexibility.

SCCM is critical for streamlining IT operations, reducing manual efforts, ensuring compliance,
and ensuring a standardized and secure computing environment. It enables organizations to
manage their software and hardware assets more efficiently, improve security and compliance,
and simplify the process of deploying and managing systems across the enterprise.

When it comes to SCCM, there are two methods for deploying packages. If the package is an
MSI, the steps are much simpler, as shown below. Of course, if you want to use wrappers or EXE
bundles, you can, but there are some extra steps to take.

Deploy MSI via SCCM

To deploy an MSI via SCCM, go to Software Library -> Application Management -> Applications
-> right click Create Application

oider 1oQls | aearc ol

Home Folder Search
(- - ||3 % » Software Library » Cwer
Boftware Library <
4 & Overview
4 | | Application Management
b | (2] A
: il k1 Create Application
i3 Lice o
¥ |mport Application
» [y Pac
3
& Aok F-;:ul-de.r

Because the source is an MSI, choose Windows Installer and browse for source content

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 242

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

) Autoematically delect information about this applcation Bom mtalation fles:

Topse amndcoves Inataller [mia i)

| v

Location: |

Enample: \WSeiver\Shane'\Fis

©) Manusk Yy e :

| Bows.

This warning is present with most MSI packages, so we can click YES:

ﬁH&rﬂ Flder Saarch
e

oftweare Library
b i Overview
] Appicatan Management
b T Appliesbant
‘l License Information for Sore dppt
* (3 Packages
o Apphieation Requess
& Gigbal Condtgns
W A Vot ETonmenis
T Windzwt Sddeleading e
1 Softwaee Lipdater
| Operating Systems
i Winiderard Serncang
| Detkinp Anabytics Seniging
| Mredoft Bige Management
L D 185 Chent Masagermant
B Serpts

B Ausets wnd Complisnce
1) Softwace Library
-

- ':.' % & Softswse Lbwey » Overvew 0 Apphesteons Massgement » Applsbons »

4 Applications Search Besulls - 3 tens shows

.
g’ Genarsl

gt I prmatson
Surtenary
Pregre
Cosmplaticn

Create Application Wizard

Spaaty seltings for this applcation

Appkcatons cortan softwam ot
Fpokcations can contsn mkbpi

o dnploy b upers and devices m your Configuraton
Iypes thut cusiomas the netakat o

Manager grevormant
BpokCaon

The publsher of 722207 -wid.msi fde could not bewerfad. Ane you sure
:k that o wiard B import this File?

The next steps require only to acknowledge what is going to be created so click Next until the

wizard is finished.

Powered by Advancedinstaller.com

Eo Advanced Techniques in MSI Packaging

243

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

R

3 Microacdt Edge Mansgement
] Oy 365 Clipet Mansgemant
I scripts

B pusets and Compliance
ﬂ!‘-mllnq
Il Manitoring

{---}l-ﬂ\rmhbuyrmr Appliatsn Mansgesent » Appleabont
boftware Litasry « Apphoations Seardh Repaits - 34 items shown
I Dvercira
7] Application Maragement
v L Apploations ? Impad lnfommation
(5 License Intarmatsoes for Stote Asgd
- Bl Factagm General View imported nformation
;"-ﬂpphmﬁmﬂh
(] Bobal Conditions: Genenal Iefermation
4 App-V Vtusl Erarcaments Surmmany
R Windiows Sideloading Keys Sragem I rovtcmr chomstion maccovsty o Wecoms b (e
* (2] Sattmans Updares CE
v [Cpensting Sysoems Daeale
. Top 20
v O ¢ mmnn- D 2201 frEd ecdbion}
b) Desktop Arabtics Senvcing B b i

Coce: (201 MOFE-0CT-3703-200

Dlapicymart typa ramar T.2p 32 01 Gl acition] - Windows instaler [
Prochuct e 1-4E0000N SO0 ==
It beshaviod. Inatall for syansm f resaarcs i devans | Dffeesse natsl oruser

hin

R Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com

244

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

. T—

l2g License Infoemation fior Store Appd
v [Packages
o application Requents
(2] obal Condtiors
AV etusl Efressesmenty,
T Windows Sidelaading Kyt
b Soltware Updates
] Operating Systems
¢ L Windows Seracing
b Detktep Anshtics Senating
* 7 Mcrosoht Edge Managemens
] Odfice 365 Client Management
P Scripts

= v'_F % b Sofewars Libiesy ¢ Overview b Application Masagement » Applcatons b

i Applications. Search Resulis - T4 ibémd ihdmn

@ Genaral informatszn
Gareral

Specity nformation about this appecation

Impest Inlsmmation

aral Indoimmation

Sy the ranslaton program L et Bopic At v e seguned ranalaon rghi
Installsion program: maenee A "TEIA] w64 e g

| Bur restalae pengree a8 A3 b prvess on G400 chenls

it e Iratall for pystem davon

o P Cverview
4 [Appheation Mansgement
* | [+ Applications
(55 Lcerae Informaton for Store Apps
» Ol Pasiages
[off Appiication Regquests
(=) Giobal Conditions
9 dpp- Vietual Envispenemants
T Windows Sadeinading Kev
b Seleware Updaies
¥ L] Operatineg Syviems
*) Winedomns Servicing
v | Deskbop Anglytics Servicing
7 Microsof Edge Management
¥ 2 Offie 385 Chent Managesent
B Seripes

e Assets and Compliance
5 Sofrmre ibnary
W Monnoing

+ % 4|_T: % b Solwars by ¢ Owveratw ¢ Apphoabios Mansgesment & Applicationd »

i Applications. 1000 flems

C R m
Garatal
bnpoet Il airmatszn
General Infoemation
Sufmmaci [~
Piogress =

| _comaimion I

beboareanin
= Bpplnaton e 1D 22 07 (54 el
* s somrarta
» Publeghar
= Soltearg vl
= Opbonal méererce

@ e task “Create Appication Wizard™ compieted successhuly

uimucw
‘innu Deglryment type rame: 7D 22 00 (54 edon) - IWindows instaler (™ ma e
aimmu Fgusersent ruked.

aiﬂu Covtant
+ Comtent cyson: ToeShwalcsJere 0001 ssemens nefinin OMDPF T Iig- 2000-obd-1 000 R 1-801

dranalaten
+ Instalgton progeaen: s i T2 ok mad® ig

G ccremn Detection Methos ¥
» Preshont st {331 70FE5-40C 12702 2201-00000200000]

"ﬁﬂ User Exporarcs .
s imstsllator Bebaaoe lratall bor pyatern

To et troe iz, ik e

R Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

245

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

An that is it, all that is left to be done is to distribute the package content on all available
Distribution Points and deploy the packaged to the desired list of devices/users in the
infrastructure.

Deploy EXE/VBscript/PowerShell via SCCM

When it comes to other forms of installers, there are a few additional steps which need to be
taken. First, go to Software Library -> Application Management -> Applications -> right click
Create Application

Folder Tools | Search Tools -]
Home Folder Search

¢ = ||:_'7| “ ¢ Software Library » OCwer

Goftware Library £

4 ff;f Owerview
4 [| Application Management
| [55] Apg
'-?ﬂ Lice
4 F'an:
E Apg Folder]

[€7] Create Application
pt Import Application

We will have to choose Manually specify the application information, which will give you the
option to choose Script Installer later on this wizard.

Sustonmatazady debect information about i spplcation Biom instaliation e

®) [Hiarinly speciy the spplecalion riomation

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 246

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Next, fill in all the information for the General Information tab. Keep in mind that “Name” is only
an internal information in SCCM and not what the user sees in Software Center.

-
- » [5 + Golweliewy b Dvirvies
[ecttumure Litrary
& Ot
] Applcation bansgrmest g! sl nfsmsates E‘
b Applations
B L enas Inbcrmation for Store Apge Girvoel Spocity information about thes applcation
* [Paciages
o hppicton Reguett Softwars Canter
= Gupbad Cordetzen z"' "_" - [P a
B Appe W Virtuad | regnerdni :. :.' T —
T Wondown Sedrigading Enn ; ¥
{ omphticn
iy Ljadated Puiblahus Sy
Oprratng fyvtem Ciforal mifomros
Wirahgers fatrvaleng T T
Benitop Analvtics Servicing
Bt rerie E plipe At Cuin pubinbact
Coicy 365 Clant Marugempnt
W Sl
Spaciy B aciminatrave Lnery wha e aponsbie for Sha applcaton
Cwrar Eroena
Suppod cortact Erowin
A et ard Eomphance
= 4 Prbviead Fent Casel
[T Sofamts Libewry

Next, select English default and remove all other languages if not specifically mentioned
otherwise. The Localized application name is the name shown is Software Center:

Specify the Configuration Manager Application Catalog entry

Specty information sbout how you want fo deplay B applcation (o users when they browse the Spplcation Caialog.
T preride inflosmaen in B ipeclie Lnguads, selet the lnguags Belom you Snbef B delsiplion

Selacied angugs: [Erghe: defmt =l A Ramave... I
Locakred spleation nams Jaon_x it wall g shown in Softwars Canter)

Uer cabegades | (=

Liser documentation: I

We will need to create a deployment type. A deployment type includes all of the information and
instructions required for SCCM to successfully install and manage the application. Details such
as the installation command, installation behavior, requirements, detection methods, and user

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 247

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

experience settings are all included. SCCM supports a variety of deployment types to
accommodate a variety of application scenarios and deployment needs.

2 deployrrent fypes and the priorty in which theywill be applied for this

Dreglogmannt tppeey inclads information sbout the inctaliston mefhad and the powcs ey for S applic ston,

Diognmard tpper:

[Fae

[T P——
T i s vl bt o el e,

When we reach the specify settings dialog, we choose again Script Installer:

Cimpkomaerd b inchuds information aboul B inslallaton method ared source Hes o B sopkcaton

Tis Ydfinciosst: Bructaller [mi ie] w
"wiradimers rctalbed |* ires is]

Wirk ape pachaze [T ot " aigeburche]
o i Sl ek i e Wb Shzee

p— ezl 2 gl e skt by
Meicea Applataon Viualz shon T
‘i Pherne aif achusgs [xag el
"wirakmers Plere o gk age frthe Winde Plans Sus)
“Wirekov bobele Cabwrel
g Pach.age o ilS [g He|

Baruily 1080 g Pachage For iS5 hom Ag Thire
g Pachage for Archaed . agh. i)
i Pach e b i o G Py
Mat 05
ek At

"wirekers brotalel Beough MOM [il

Next, we fill in the application deployment type name:

Powered by Advancedinstaller.com 248

Eo Advanced Techniques in MSI Packaging

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

General Information

Detection Method
User Expenience
Reguirements
Dependencies
Summary
Progress

Completion

Specify general information for this deployment type

Fppheations can have sy rumber of dephoyment types. Deployment types include inks to cortent and seftings that
spacify how the conbent is delivered.

Hame: |Scrpt_Test_Ape]
Administrabor comments:

Languages:

Now is the part where we add the Content location from the master share and the install and

uninstall lines.

Detection Methad
User Experience
Requirements
Dependencies

Sumimarny

Progress

Completion

Spedafy information about the content o be delvered o targel devicas

Specify the location of the deployment type’s content and other ssttings that controll how content is delwensd 1o target
devices. Al the contents in the path specfied will be defvensd

Content locaton: VaerverSonpt_Test_App [Brorrse.
[Persist contert in the chent cache

Specily the command used to install this confent.
et algon program. Ininl gl [—
et plateon #adl im:

Configurton Marager can mesave instalatons of ths content I an urinsial program is speciied balaw,

Ursinetad pregran [Urirazat oo 1] Bowze
Urangtal st in:

[[] Fun instalation and uriratal prograes as 3248 process on G458 chents.

Powered by Advancedinstaller.com

ko Advanced Techniques in MSI Packaging

249

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

On the next tab, add the detection method. The detection method checks for the existence of an
application using specific criteria or rules. When you deploy an application in SCCM, you define
a detection method to ensure that the application is only installed on devices that require it or to
determine whether an upgrade or update is needed.

The detection method can be configured to use various criteria, such as:

File or Folder Detection: SCCM can check the device for the presence of a specific file or
folder. It can look for the presence of an executable file, a configuration file, or a specific
folder structure associated with the application, for example.

Registry Key Detection: SCCM can check the device for the presence or value of a
specific registry key. This is frequently used to identify applications that generate
specific registry entries during installation.

Windows Installer Detection: SCCM can use the Windows Installer database (MSI) to see
if a particular product code, package code, or product version is already installed on the
device.

Custom Script Detection: Custom scripts (VBScript, PowerShell, etc.) can be used to
define detection logic in SCCM. Administrators can create scripts to perform complex
checks based on their needs.

With the MSI deployment method, this is easy because SCCM uses the Windows Installer
detection which checks for the presence of the product code, and these steps which we are
doing here are skipped. In case your package contains an MSI it is recommended to use the
Windows Installer Detection.

D

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 250

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

=4

@ Detection Method

General

General Information
Content

Detection Methed

User Experience
Reqyuirermnents

Dependencies

Susmmary
Progress

Completon

Create Deployment Type Wizard

Specify how this deployment type is detected

Spescily how Confguration Manager detemmines whether this deployment typs is sleady presant on & device. This
detecton occurs before the content is installed or when soffware irventony data i colected

) Cordigure nies 1o detect the presence of this deployment hype

Corrmctor [Clause

{7} Use a cusiom scept 1o detect the presence of ths deployment hype:

el bures:

J

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

251

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Create a nule that indicates the presence of this application.

Satting Type: | File System

Riagistry
Specdy the file or folder b Windows Instaler
Typa: | File w]
Path: " Erowse.,
File or folder name:]

This file or folder is associated with a 32bit applcation on 64-bi systems

(®) The file system setting must exist on the target system to indcate presence of this application

("} The file system setting must satisfy the following nule to indicate the presence of this application

Propesty: Diate Modifiad
Operator: Equals
Value:

Next, we reach the user experience settings. The configuration options that determine how an

application installation or update is presented and handled on end-user devices are referred to

as user experience settings with applications. Administrators can use these settings to
customize the behavior and appearance of application deployments in order to provide a
consistent user experience. The following are some of the most common user experience

settings available in SCCM:

e Install for User or System: This setting determines whether the application is installed
per user or per system. Per-user installation installs the application for the currently
logged-on user, whereas per-system installation installs it for all users on the device.

e Install Whether or Not a User is Logged On: Determines whether the application

installation should continue even if no user is currently logged in.

e Allow Users to Interact with the Installation: Allows or disables user interaction with the
installation process, such as displaying or suppressing installation prompts or dialogs.

The most used configuration options for these step are:

e Installation behavior: Install for system (runs under NT System/Administrator account)

e Logon requirement: Whether or not a user is logged in
e Installation program visibility: Normal

Powered by Advancedinstaller.com

Eo Advanced Techniques in MSI Packaging

252

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Allow users to view and interact with the program installation: Checked

@ User Experience -
General

Specify user expenence saltings for the application

Genenal Infarmation

Content

Dietection Method

User Experence

Requiresnents Irvstlaticn beshavior: |m,,m "'|

Dependendies Lorgon requrement [Whesther or ot & user is logged on v]
S instalation pmgram viskdty. [tormal V]
Progress
Completion [Alorwr umssrm 1 wiew aned inbernct with thes program inatallaton

Speaify the: madmum run time and estimated nstalation time of the deployment program for this applcation. The
et ed ratalaton tevd Gl [0 the user when the sopboaton ngtals.

WMacern alrmnd s e firades]
Estrmated mstalation tre [Fnutes]:

Click next and add installation requirements if needed and dependency application

Define a group of applications that will satisfy a specific software dependency.
Speciy one or more applications. I any one of the specified applications i present on a device, this dependency group
is considerad satisfied for that device. To aulomaticaly install one of thess applications f none ame detected, check Auto
Install for the desired applcations. Installation attempts will eocur in the order isted.
Dependency group name: | dependency
| Proy spphication Supparted Deployment Types Auto Install
a
& | Conce
In the final part, click Next until everything is done.
k Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 253

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

g r,-
General

General Information

Confirm the sattings for this deployment type

M'W
. Tmmu%
* Aderarestrniod comeanty
+ Languages
Contant locabon: defthwaSdeJar 53001 nefinie IOMOFEDWP koo Songt_Ts
. mermang et | e
e o
. progmm P
= Irstallabion giart in
Detection Method

& fllow usars o intersct with this program: Mo

= Il alovwes ron bme {meutes) 120

= Estrnpted matall vt [missstes) O
Flegatereria

Depandercaes

T change these ssttings, chok Prevsous. To apply the seltings, choic Nesd:

Canecel

E Advanced Techniques in MSI Packaging
Powered by AdvancedInstaller.com

254

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

ﬁ The task "Create Deployment Type Wizard™ completed successfully

Detads:

1 Sucoess Genensl Information

 Veabnciugy St s
= FareaRONI OMTMEEY

< Previous Mext = Sumimiary Close

E Advanced Techniques in MSI Packaging
Powered by AdvancedInstaller.com

255

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

89 R
L Confirm the seltings for this application
General Information

Softwane Center
Deployment Types Detaids:
| Summary |
Ganrnl Infarmaton:
Progres - Appication eame: Seripy_Test_ige
+ Administrator cOmmants
Completson N
+ Softwaie
+ OpSional reference:
Categories:

Cramers
= 00 _z00setr 014 8

Support contacs
+ D01 _z000setr_014_a
Soltwae Canter enires spacifed for tha following langusges:

LR

Deployment type names
~ Sorgt_Test_App

To change these seffings, chok Previcus. To apply the settings, chok Hest

R e

General

Senesinfomaton (@ The task “Create Application Wizard” completed successfuly
Software Center
S Detals:
Summary
Progress & Sumcess Gerersl Information
= Apglication name: Scrigt_Test_bop
] comments:
= Publisher:
= Schware verson:
« Dptional refenence:

a'S-m Categones:

o&m Chames
» ot _z000ser_01d_a

& Success Suppost contacts
= et _z0038etr_01d_n

& 5yccess: Sotware Center entries specified for the following languages
® an

o
.Sacqm_rbcphyﬂulww

T et the wizard, chick (loss.

= Previous Mt = Summary Cloze:

Eo Advanced Techniques in MSI Packaging

Powered by AdvancedInstaller.com

256

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

And that is it. As with MSI deployments, all that remains is to distribute the package content to
all available Distribution Points and deploy the package to the desired list of infrastructure
devices/users.

Deploy with Intune

Intune is a cloud-based service provided by Microsoft that focuses on mobile device
management (MDM) and mobile application management. It is also known as Microsoft Intune
or Microsoft Endpoint Manager (MAM). It is part of the Microsoft Endpoint Manager tool suite
and is intended to assist organizations in managing and securing their devices, applications,
and data across multiple platforms such as Windows, macOS, iOS, and Android.

Intune includes a number of features and capabilities that help IT administrators manage and
protect devices, deploy and manage applications, enforce security policies, and ensure
compliance within their organization. Intune's key features include:

Device Management
Application Management:
Data Protection:
Compliance and Security:

Intune provides organizations with greater flexibility, scalability, and ease of use by providing a
unified and cloud-native approach to managing and securing devices and applications. It works
well with other Microsoft solutions and services, such as Azure Active Directory and Microsoft
365, to provide an all-encompassing endpoint management and security solution.

With Intune, organizations can use a centralized and cloud-based management console to
implement modern management practices, empower their workforce to be productive on any
device, and ensure the security and compliance of their digital assets.

Intune supports a variety of application deployment methods, but for the purposes of this book,
we will focus on LOB (line of business) and Win32. Let's look at how these two deployment
methods compare in Intune.

Looking at LOB (Line of Business) Applications, we can see the following conditions::

e LOB applications are typically custom-built or specialized applications that an
organization develops in-house to meet their specific business needs.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 257

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

e Deploying LOB applications entails directly uploading the application package
(e.g.,.appx,.msi) to Intune. After that, the package is distributed and installed on
managed devices.

e LOB applications are primarily designed for modern platforms such as Windows 10 and
later, but they may also support other platforms such as iOS and Android.

e LOB applications are ideal for deploying custom or business-specific applications within
a company. They are frequently organization-specific and may not be available in public
app stores.

e Intune offers LOB application management capabilities such as app installation,
updates, and removal, as well as the ability to enforce policies and configurations
specific to these applications.

e For LOB applications to be deployed, the application package must be available for
upload, as well as proper signing certificates and relevant metadata.

Win32 Applications, on the other hand, are intended for a variety of purposes.:

e Win32 applications are traditional desktop applications that were not created with
modern management platforms in mind.

e The Intune Win32 App Packaging Tool is used to create an application package for
Win32 application deployment. The application installer (e.g.,.exe), installation script,
and other dependencies are typically included in the package. The package is distributed
and installed on managed devices via Intune.

e Win32 applications work with a variety of Windows versions, including legacy Windows 7
and Windows 8.1, 10, as well as modern Windows 11.

e Win32 applications are appropriate for deploying traditional desktop applications, such
as legacy or complex applications that may necessitate customization or special
installation procedures.

e Intune provides Win32 application management capabilities such as app installation,
updates, removal, and policy enforcement. Furthermore, Win32 applications can use
detection rules to determine whether or not the application is already installed on the
device.

e Converting the application installer into a format compatible with Intune, as well as
relevant configuration files and detection rules, is required when creating a Win32
application package.

In summary, LOB applications are organization-specific applications, whereas Win32
applications are traditional desktop applications. LOB applications are typically designed for
modern platforms, whereas Win32 applications are more universal. Both deployment methods
offer management capabilities, but the packaging and deployment processes vary depending on
the application. Depending on the application requirements and compatibility with the target
devices and platforms, organizations can select the best deployment method.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 258

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

To make it easier to understand the difference between the two, we can look at LOB applications
somewhat as MSI deployments with SCCM and Win32 deployments are similar to Script
installations in SCCM. Of course you need to take in consideration multiple factors when
creating such applications and for now, the business standard usually leans to Win32
deployments. For now, let’s take a look at how to deploy you application with both methods.

Deploy MSI via LOBA

Deploying an MSI with LOB (Line of Business) applications in Intune involves a few steps. Here
is a step-by-step guide to help you deploy an MSI using the LOB method in Intune:

Step 1: Prepare the MSI Package

Of course the first step is to create and prepare the MSI package with all the necessary
configurations and adjustments before deploying it. In our case we will use the repackaged VLC
Media Player MSI.

Step 2: Upload the MSI to Intune

e Sign in to the Microsoft Endpoint Manager admin center with your Intune administrator
credentials.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 259

https://endpoint.microsoft.com
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

(m] CAPHYON SRL {caphyon.onmicre %+

‘endpoint.microsoft.com

CAPHYON SRL (caphyon.onmicrosoft.com)

A Home
) pashboard -
Home Microsoft Managed Desktop
= All services
| [N pevices
Status News
pps
1 @ Encpointsecuriy I p— Hestty Intune add-ons
Reports
‘ . 1 5 Intune add-ons offer advanced endpoint management
‘ & Users functionality.
| Connector status 1 error
| 3o °
_ Account status © Active
| &2 Tenant administration
K Troubleshooting + support Client apps @ No installation failures Intune Customer Success blog Seeall >
| Device compliance © Allin compiiance Support Tip: i0S/iPadOS 17 Beta with Microsoft Intune
| Device configuration ® No policies with error or conflict
Update to Microsoft Intune PowerShell example script repository on GitHub
Service health Q Healthy
Introducing the Microsoft Mac Admins community
|
|
| Cloud PC Guided scenarios seeall =
| Increase productivity with Cloud PCs Deploy Edge for mobile
‘ Easily provision Windows 365 Cloud PCs and manage them alongside your physical Configure Edge for use at work and deploy it to the iOS and Android devices managed
| devices. by your organization,
1
|
What's happening in Intune
What's new in Microsoft Intune
Features in development
Ul updates for Intune end-user apps

e Navigate to "Apps" > "All apps." Click on "Add" to add a new app.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 260

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

[im} Apps - Microsoft Intune admin ¢ X

Microsoft Intune admin center
«

A Home

E4] Dashboard

i= All services

& Users

& Groups
£ Tenant administration

K Troubleshooting + support

‘endpoint.microsoft.com

Home > Apps

Apps | All apps

EE——")

@ overview

i All apps

& Monitor

By platform
Windows
B ios/ipados
Ll macos

B Android

Policy

App protection policies

App configuration policies
105 app provisioning profiles

] s mode supplemental policies

Q

Policies for Office apps
Policy sets

@ Quiet time

Other

B App selective wipe
App categories

LU E-books

= Filters

Help and support

& Help and support

Refresh "/ Fitter L Export Columns
O Kearch by name or publisher
Name T Type Status Version Assigned
Cloud Managed PC Office ProPlus... Micrasoft 365 Apps (Windows 10 .. Yes
Cloud Managed PC Office ProPlus... Microsoft 365 Apps (Windows 10 .. Yes
Ultra Paint Microsaft Store app (legacy) Vs
VLC media player 3.0.12 (64-bit) Windows app (Win32) 30120 Yes

e Select "Line-of-business app" as the app type.

a

Advanced Techniques in MSI Packaging

Powered by

AdvancedInstaller.com

261

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

[im} \ Select app type - Microsoft Intu +

endpointmicrosoft.com

A Home

Ed) Dashboard
i= All services
3 pevices

pps

@, Endpoint security

& Users

& Groups
£ Tenant administration

Troubleshooting + support

Home > Apps

Apps | All apps

‘

@ overview
Al apps
& Monitor
By platform

‘Windows

i05/iPad0S
L macos

B Android

Policy

App protection policies

App configuration policies

i0S app provisioning profiles

] s mode supplemental policies

A Policies for Office apps
Policy sets

@ Quiet time

Other

B App selective wipe

App categories

LU E-bocks

= Filters

Help and support

& Help and support

) Refresh < Fitter L Export Columns
\ P search by name or publisher
Name Ty Type Statu
Cloud Managed PC Office ProPlus... Micrasoft 365 Apps (Windows 10 ..
Cloud Managed PC Office ProPlus... Microsoft 365 Apps (Windows 10 ..
Ultra Paint Microsaft Store app (legacy)
VLC media player 3.0.12 (64-bit) Windows app (Win32)

Select app type % 4
Create app _
App type 2
[tine-of-business app M
.
&
Line-of-business app
L 4

To add a custom or in-house app, upload the app's installation file. Make sure the file
extension matches the app's intended platform. Intune supports the following line-of-business w
app platforms and extensions:

Android (APK) +
i0s (IPA)

macOs (.pkg)

Windows (msi, appx, .appxbundle, msix, and msixbundle)

Leam more about Line-of-business apps

Validate your applications using Test Base for Microsoft 365

Test Base is a cloud validation service that allows you to easily onboard your applications
through the Azure portal. You ean quickly view deep insights including test resuits,
performance metrics, and crash/hang signals. Through a Microsoft managed environment, you
can gain access to world-class intelligence about the performance and reliability of your
applications.

Get started on Test Base

a

Select the App Package File

Advanced Techniques in MSI Packaging

Powered by

AdvancedInstaller.com

262

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

(]

\ App package file - Mierosoft Int. X+

a

Microsoft Intune admin center

A Home

4} pashboard

= Al services
3 pevices

£ Apps

& Groups

© App information

Select file *

@, Endpoint security
Reports

& users

£ Tenant administration

X Troubleshooting + support

]] ‘endpoint.micresoft.com

Home > Apps | All apps >

Add App

Line-of-business app

@

Select app package file

App package file

App package file * O

[[vic Media player.msi~

Name: VLC Media Player
Platform: Windows

Size: 7235 Mi

MAM Enabled: No

Execution Context: Per-Machine

Step 3: Configure the App Details

5

Provide the necessary details, such as the app name, description, and publisher

information.

a

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

263

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

M\ Add App - Microsoft Intune

<« C 0 6]

Microsoft Intune admin center

an x o+

‘endpoint.microsoft.com

Home > Apps | All apps > p.
Al Add App X -
E4) pashboard ‘Windows M3 line-of-business app.
2
= Allservices a
[N pevices @ Appinformation () Assignments >
E22 Apps Select file® O VLC Media Player.ms
@, Endpoint security
repors Name* @ VLC Media Player L4
& users Description * @ VLC Media Player —
&3 Groups 4
&3 Tenant administration .
Edit Description
K Troubleshooting + support
Publisher * © [videoLan
App instal context © ()
Ignere app version © (v GO
Command-line arguments
Category O [0 selected V]
Show this as a featured app in the = -)
Company Portal () -
Information URL @ [(Enter s valid ui]
privacy URL O [Enter a valid url |
Developer © [J
owner © [J
i) 4 o
image-id intune-mem-admin-center-loba-app-details.pn
image-title
image-alt-text

As you can see, just as the case with deploying MSI packages with SCCM, no detection method
is requested because Intune automatically picks up the Product Code of the MSI package and
uses it as a detection to check if the application has been successfully installed on the target

devices/users.

Step 4: Assign the App to Groups

e Click on "Assignments" to assign the app to specific user groups or device groups and
choose the appropriate groups based on your deployment requirements.

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com

264

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

‘endpoint.microsoft.com

Microsoft Intune admin center

€ Home > Apps | All apps > €
H
Al Add App - X a
Ed) Dashboard Windows MS! line-of-business app
¥
i= All services ¥
[N pevices @ rppinformation €@ Assignments >
L Required O &
@, Endpoint security -
Group mode Group Filter mode Filter Install Context 4
Reports
No assignments. w
& Users
&8 Groups + Add group @ + Add all users @ + Add all devices © 4+
£ Tenant administration
. Available for enrolled devices &
K Troubleshooting + support
Group mode Group Filter mode Filter Install Context
@ Included AutoPilot Test None None Device context
+ Add group @ + Add all users ©
Uninstall O
Group mode Group Filter mode Filter Install Context
No assignments.
+ Add group (+ Add all users © + Add all devices
a
[

Step 5: Review and Deploy the App

e Review the app settings and ensure everything is configured correctly. If everything is
correct click on Create.

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 265

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

< 0 ®] ‘endpoint.micresoft.com,

Microsoft Intune admin center

Home > Apps | All apps > €
H
Al Add App - X -
4] Dpashboard ‘Windows M3 line-of-business app.
- F
= i @ rppinformation @ Assignments € Review + create o
3 pevices)
Summary
&&2 Apps
W Endpoint security App information .
53 App package file VLC Media Player.msi Y
Reports pp packag: ¥
w
-'. Users Name VLC Media P\sysr
&2 Groups Description VLC Media Player o
£ Tenant administration
 Troubleshooting + support
Publisher VideoLAN
App install context Device
Ignore app version No
Command-line arguments
Category
Show this as a featured app in the No
Company Portal
Information URL
Privacy URL
Developer
Owner
| Notes
| Lago
|
! Assignments
! Group mode Group Filter mode Filter Install«
Required
> Available for enrolled devices .
m

Deploy EXE/VBScript/PowerShell via Win32

Deploying EXE installers, VBScript or PowerShell wrappers via the Win32 method requires more
steps with Intune as it requires more steps with SCCM, so let’s take a look at what is necessary
to create and deploy a Win32 Application.

Let us assume that we have created a PowerShell wrapper for our VLC Media Player repackaged
application with PSADT.

Step 1: Prepare the PowerShell Script

Create or obtain the PowerShell script that you want to deploy. Ensure that the script performs
the desired actions and is compatible with the target devices and platforms. We won't go
through all the steps on creating and modifying the PSADT template in this example. For more
information check out our first MSI Packaging Ebook.

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 266

https://psappdeploytoolkit.com/
https://www.advancedinstaller.com/application-packaging-training/msi/ebook/additional-tools.html#_idTextAnchor110
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

P Search

h' -Path $_ }

Execute-MSI -Action 'Install® -Path 'VLC Medi

gl$installPhase = 'Pos

ationPrompt

ElseIf ($deploymentType -ieq "Uninstal

TERMINAL

PowerShell Extensior
Copyright (c) Micro! oration.

https: //aka.ms/vscode-powershell
‘help’ to get help.

PS C:\Users\User> |:|

Ln211,Col9 Spaces:4 UTF-8withBOM CRLF {} PowerShell & 0

Step 2: Package the PowerShell Script

When it comes to Win32 applications in Intune, you can't just upload the source media as it is
and this must be converted to an .intunewin format using the Microsoft Win32 Content Prep
Tool. The Microsoft Win32 Content Prep Tool is a command-line utility provided by Microsoft
that assists in the preparation of Win32 app packages for deployment via Microsoft Endpoint
Manager (formerly known as Microsoft Intune). It is intended to streamline the packaging
process and ensure that Win32 app packages meet the requirements for enterprise deployment.

First, download the tool from the oficial Github repository. Once the tool is downloaded, extract
it from the zip file. Next, open up a command prompt and use the following command:

IntuneWinAppUtil -c¢ <setup folder> -s <source setup file> -o
<output folder> <-g>

The.intunewin file will be generated from the specified source folder and setup file.
This tool will retrieve the necessary information for Intune from an MSI setup file.
If the -a option is used, all catalog files in that folder are bundled into the.intunewin file.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 267

https://github.com/microsoft/Microsoft-Win32-Content-Prep-Tool
https://github.com/microsoft/Microsoft-Win32-Content-Prep-Tool
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

It will be in quiet mode if -q is specified. The output file will be overwritten if it already exists.
In addition, if the output folder does not already exist, it will be created.

) Command prompt

Microsoft Windows [Version 10.6.22621.1778]
(c) Microsoft Corporation. ALl rights reserved.

C:\Users\User>"C:\Users\User\Downloads\Microsoft-Win32-Content-Prep-Tool-master\IntuneWinAppUtil.exe" -c C:\Users\
User\Downloads\PSAppDeployToolkit_v3.9.3\Toolkit -s "C:\Users\User\Dounloads\PSAppDeployToolkit_v3.9.3\Toolkit\Dep
loy-Application.psl” -o C:\Users\User\Downloads\PSAppDeployToolkit_v3.9.3\Toolkit\output -q

INFO Validating parameters

INFO Validated parameters within 11 milliseconds

INFO Compressing the source folder 'C:\Users\User\Downloads\PSAppDeployToolkit_v3.9.3\Toolkit' to 'C:\Users\User
\AppData\Local\Tenp\e219a68b-7d1b-u3df-bde9-e63194dbeb36 \ IntuneWinPackage\Contents\IntunePackage . intunewin

INFO Calculated size for folder 'C:\Users\User\Downloads\PSAppDeployToolkit_v3.9.3\Toolkit' is 77776188 within @
milliseconds

INFO Compressed folder 'C:\Users\User\Downloads\PSAppDeployToolkit_v3.9.3\Toolkit' successfully within 1735 mill
iseconds

INFO Checking file type

INFO Checked file type within 8 milliseconds

INFO Encrypting file 'C:\Users\User\AppData\Local\Temp\e219a88b-7d1b-43df-bde9-e63194dbeb36\IntunelinPackage\Con
tents\IntunePackage.intunewin’

INFO 'C:\Users\User\AppData\Local\Tenp\e219a00b-7d1b-u3df-bde9-e6319udbob36\ IntunetinPackage\Contents\IntunePack
age.intunewin' has been encrypted successfully within 159 milliseconds

INFO Computing SHA256 hash for C:\Users\User\AppData\Local\Temp\e219a80b-7d1b-43df-bde9-e63194dbeb36\ IntuneWinPa
ckage\Contents\3295de55-9096-14456-91ce-a823eacf7bu2

INFO Computed SHA256 hash for 'C:\Users\User\AppData\Local\Temp\e219a00b-7d1b-43df-bde9-e63194dbeb36\ IntuneWinPa
ckage\Contents\3295de55-9096-4450-91ce-a823eacf7bu2’ within 857 milliseconds

INFO Computing SHA256 hash for C:\Users\User\AppData\Local\Temp\e219a80b-7d1b-43df-bde9-e63194dbeb36\ IntuneinPa
ckage\Contents\IntunePackage. intunewin

INFO Copying encrypted file from 'C:\Users\User\AppData\Local\Temp\e219a68b-7d1b-u3df-bde9-e63194dbob36\Intunewi
nPackaINFO Computed SHA256 hash for 'C:\Users\User\AppData\Local\Tenp\e219a66b-7d1b-u3df-bde9-e63194dbeb36\Intun
ewinpackage\Contents\3295de55-9896-4450-91ce-ag23eacf7bu2’ within 857 milliseconds
INFO Computing SHA256 hash for C:\Users\User\AppData\Local\Temp\e219a06b-7d1b-43df-bde9-e63194
beb36\IntunewinPackage\Contents\IntunePackage. intunewin
INFO Computed SHA256 hash for C:\Users\User\AppData\Local\Temp\e219280b-7d1b-U3df-
bde9-e63191dbeb36\IntuneWinPackage\Contents\IntunePackage. intunewin within 945 milliseconds
INFO Copying encrypted file from 'C:\Users\User\AppData\Local\Temp\e2l
9200b-7d1b-u43df-bde9-e6319udbeb36\ IntunelinPackage\Contents\3295d 0 C e-ag23e Users\Use
r\AppData\Local\Temp\e219200b-7d1b-43df-bde9-e63194dbeb36\ IntunewinPackage\Contents\IntunePackage. intunewin"
INFO File 'C:\Users\User\AppData\Local\Temp\e219a66b
-7d1b-u3df-bde9-e63194dbeb36\ IntuneWinPackage\Contents\IntunePackage . intunewin' got updated successfully within 82
milliseconds INFO Generating detection XML file 'C:\U
sers\User\AppData\Local\Temp\e219206b~7d1b-u3df-bde9-e6319udbeb36\IntunewinPackage\Metadata\Detection. xml
INFO Generated detection XML
file within 25 milliseconds INFO Compressing folde
'C:\Users\User\AppData\Local\Temp\e219a00b-7d1b-u43df-bde9-e6319udbeb36\ IntunewinPackage’ to 'C:\Users\User\Dounl
o0ads\PSAppDeployToolkit_v3.9.3\Toolkit\output\Deploy-Application.intunewin’ INFO Calcu
lated size for folder 'C:\Users\User\AppData\Local\Temp\e219a00b-7d1b-U3df-bde9-e63194dbeb36\IntunewinPackage’ is
75376262 within @ milliseconds
INFO Compressed folder 'C:\Users\User\AppData\Local\Temp\e219a06b-7d1b-43df-bde9-e63194dbeb36\IntunewinPackage
successfully within 362 milliseconds
INFO Removing temporary files
INFO Removed temporary files within 54 milliseconds
INFO File 'C:\Users\User\Downloads\PSAppDeployToolkit_v3.9.3\Toolkit\output\Deploy-Appli
cation.intunewin’ has been generated successfully

ge\Contents\3295de55-9896-4150-91ce-ag23eac7bu2’ to
C:\Users\User\AppData\Local\Temp\e219a00b-7d1b-43df-bde9-e63194dbeb36\ IntunewinPackage\Contents\IntunePackage . intu
newin’

download the IntuneWinAppUtil GUI utility for free.

The Microsoft Win32 Content Prep Tool does not have a GUI, but if you want one you can

Once the conversion is successful, the output folder should contain the .intunewin file

necessary to upload to Intune.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

268

https://www.alexandrumarin.com/downloads/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Tl sort ~

.3 > Toolkit » output

~ 4 | <« Users > User > Downloads > PSAppDeployToo

Date modified Type

@ Microso Name

B mvp aw
Application.intunewin INTUMEWIN File 73,611 KB

i AppC

B Files

Titem |

Step 3: Create the Intune Win32 App Package

e Sign in to the Microsoft Endpoint Manager admin center with your Intune administrator

credentials.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 269

https://endpoint.microsoft.com
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

(m] CAPHYON SRL {caphyon.onmicre %+

‘endpoint.microsoft.com

CAPHYON SRL (caphyon.onmicrosoft.com)

A Home
) pashboard -
Home Microsoft Managed Desktop
= All services
| [N pevices
Status News
pps
1 @ Encpointsecuriy I p— Hestty Intune add-ons
Reports
‘ . 1 5 Intune add-ons offer advanced endpoint management
‘ & Users functionality.
| Connector status 1 error
| 3o °
_ Account status © Active
| &2 Tenant administration
K Troubleshooting + support Client apps @ No installation failures Intune Customer Success blog Seeall >
| Device compliance © Allin compiiance Support Tip: i0S/iPadOS 17 Beta with Microsoft Intune
| Device configuration ® No policies with error or conflict
Update to Microsoft Intune PowerShell example script repository on GitHub
Service health Q Healthy
Introducing the Microsoft Mac Admins community
|
|
| Cloud PC Guided scenarios seeall =
| Increase productivity with Cloud PCs Deploy Edge for mobile
‘ Easily provision Windows 365 Cloud PCs and manage them alongside your physical Configure Edge for use at work and deploy it to the iOS and Android devices managed
| devices. by your organization,
1
|
What's happening in Intune
What's new in Microsoft Intune
Features in development
Ul updates for Intune end-user apps

e Navigate to "Apps" > "All apps." Click on "Add" to add a new app.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 270

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

[im} Apps - Microsoft Intune admin ¢ X

Microsoft Intune admin center
«

A Home

E4] Dashboard

i= All services

& Users

& Groups
£ Tenant administration

K Troubleshooting + support

‘endpoint.microsoft.com

Home > Apps

Apps | All apps
D

App protection policies
App configuration policies
105 app provisioning profiles

] s mode supplemental policies

Q

Policies for Office apps
Policy sets

@ Quiet time

Other

B App selective wipe
App categories

LU E-books

= Filters

Help and support

& Help and support o

Refresh "/ Fitter L Export Columns

@ overview =

O Kearch by name or publisher
i Allapps R -

Name T Type Status Version Assigned

& Monitor

Cloud Managed PC Office ProPlus... Microsoft 365 Apps (Windows 10 .. Yes
By platform Cloud Managed PC Office ProPlus... Microsoft 365 Apps (Windows 10 .. Yes
Windows Ultra Paint Microsoft Store app (legacy) Yes
@ ios/iPados VLC media player 2,012 (64-bit) Windows app (Win32) 30120 Yes
L macos
& Android
Policy

e Select "Windows app (Win32)" as the app type.

a

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com

271

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

[im} \ Select app type - Microsoft Intu +

endpointmicrosoft.com

«
Home > Apps Select app type %
A tome Apps | All apps Creste app _
E4) pashboard
- . App type g
= Al services « Refresh 7 Fiter L Export Columns [windows spp winz2) M|
N pevices @ overview = >
P search by name or publisher
Pps Allapps - . a
Name T Type statu Windows app (Win32)
@, Endpoint security & monitor
Cloud Managed PC Office ProPlus... Microsoft 365 Apps (Windows 10 ... L4
Add a custom or in-house Win32-based app. Upload the app's installation file in .intunewin
8y platform Cloud Managed PC Office ProPlus... Microsoft 365 Apps (Windows 10 .. ot oo e -
& Users g
Windows
2 croups Ultra Paint Microsaft Store app (legacy) Learn more sbout Win32-based 3pps .
@ ios/iPados VLC media player 3.0.12 (64-bit) Windows app (Win32)
£ Tenant administration
L macos _ o) _
K Troubleshooting + support Validate your applications using Test Base for Microsoft 365
& Android
Policy Test Base is a cloud validation senvice that allows you to easily onboard your applications
through the Azure portal. You can quickly view deep insights including test results,
App protection policies performance metrics, and crash/hang signals. Through a Microsoft managed environment, you
can gain access to world-dlass intelligence about the performance and reliability of your
App configuration policies applications
105 app provisioning profiles Get started on Test Base
] s mode supplemental policies
A Policies for Office apps
policy sets
@ Quiet time
Other
B App selective wipe
App categories
LU E-bocks
= Filters
a
Help and support
& Help and support o

e Select the App Package File, in our case the .intunewin file created earlier

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 272

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

[im} \ App package file - Microsoft Int. X =+

< C & & ‘endpoint.micresoft.com

Microsoft Intune admin center

Home > Apps | All apps > App package file % €
A Home Add App ~
4 Dashboard Windows app (Win32) App package file * ©
= Allservices ["Deploy-applicationintunewin” |E n
[l pevices © ~App information Name: Deploy-Application.ps1 >
e o s e .
: Endpoint security sectfie” © e ;IA;JI Enabled: No :'
Reports 4
4 s [o] -
& Groups +
&2 Tenant administration
Troubleshooting + support
[mi]
Step 4: Configure the App Details
e Provide the necessary details, such as the app name, description, and publisher
information
E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 273

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

<« C m o ‘endpoint.microsoft.com

Microsoft Intune admin center

€ Home > Apps | All apps > €
Al Add App - X -
E4] pashboard Windows app (Win32)
¥
= All services ¥
[N pevices © App information >
L= Select file * O Deploy-Application.intunewin a
@, Endpoint security -
Name* @ VLC Media Player 4
Reports v
&a Users Description * @ Deploy-Application.ps1 -
& Groups +

£ Tenant administration Edit Descript
it Description

X Troubleshooting + support

Publisher * © [videoLan |
App Version © [3018 |
Category O [0 selected ~]
Show this as a featured app in the = -)

Company Portal ©

Information URL [Enter a valid url |
Privacy URL © [Enter a valid url |
Developer O [J
owner © [|
Notes @

Logo @ Select image

a

Step 5: Define the Installation parameters and behaviors

e Fill in other relevant information, such as the installation command and uninstall
command. Most of the behavior is similar to SCCM methods

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 274

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

‘endpoint.microsoft.com

Microsoft Intune admin center

< Home > Apps | All apps > €
Al Add App - X -
E] pashboard Windows app (Win32)
"
= Allservices E
[N pevices @ rppinformation @ Program >
e Specify the commands to install and uninstall this app: &
@, Endpoint security
Install command * © [Deploy-Application.exe Install -] B
Reports
Uninstall command * () [Deploy-application.exe Uninstal] -] -
& users
&2 Groups Install behavier © User +
&2 Tenant administration Device restart behavior [App install may force 2 device restart M
Troubleshooting + support
K Troubleshooting + suppor Specify return codes to indicate post-installation behavior:
Return code Code type
[o | [success ~|@
[707 | [success v]@
[3010 | [soft reboot v]@
[1641 | [Hard reboot ~v|@
[1618 | [etry ~ @
+ Add
m
.

Step 6: Define Application Requirements

e Specify any requirements or dependencies for the app, such as minimum operating
system versions or device architectures.

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 275

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

<« C m o ‘endpoint.microsoft.com

Microsoft Intune admin center

Home > Apps | All apps > €
A Home Add App - .
4l pashboard Windows app (Win32)
= All services ¥
[} Devices @ rppinformation @ Program € Requirements

E22 Apps Specify the requirements that devices must meet before the app is installed:

@, Endpoint security

Operating system architecture * © [Ba-bit v [2
Reports

Minimum operating system * () [windows 10211 v -
& vsers
&2 Groups Disk space required (MB) O [| 4
&2 Tenant administration Physical memory required (MB) © [|

Troubleshooting + support

X g+ supp Minimum number of logical processors | |

required

Minimum CPU speed required (MHa) © | |

Configure additional requirement rules

Type Path/Script

No requirements are specified.

+ Add

a

Step 7: Define the Detection Method

e Specify the detection method for the app, which determines whether the app is already
installed on the target device. Because we have an MSI we can still use the Product
Code of our MSI as a detection method

Eo Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 276

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

< C & & ‘endpoint.micresoft.com

Microsoft Intune admin center

Home > Apps | All apps >

&
H
A Home Add App - * o
E4] pashboard Windows app (Win32)
¥
i= All services b
[} Devices @ rppinformation @ Program @ Requirements @ Detection rules >
£ Apps Configure app specific rules used to detect the presence of the app &
@, Endpoint security
Rules format* © [Manually configure detection rules ~ [2
Reports
-
&a Users Type Path/Code
&2 Groups msl (35A71788-F15-4046-BF8A-58913DDESDAC o
£ Tenant administration +Add @
X Troubleshooting + support
\ o

Step 8: Configure Dependencies

e If required, add any dependencies to ensure the app is deployed correctly

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 277

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

<« C @ 6] ‘endpoint.micresoft.com

Microsoft Intune admin center

Home > Apps | All apps > €
H
Al Add App - x .
E4) pashboard Windows app (Win32)
¥
= Al services 2
[} Devices @ rppinformation @ Program @ Requirements @ Detectionrules € Dependencies
E22 Apps Software dependencies are applications that must be installed before this application can be installed. To automatically install a
@ Endpoint secur child dependency app before installing the current parent app, enable the automatically install option. To anly install the current
o Y parent app if the child dependency app is already detected on the device, disable the automatically install option. There is a =
s maximum of 100 child dependency apps, including references to other apps outside of this view, forming a graph of apps. The
f 100 child depend luding ref to othy tside of thi [h of apps. Th 4
total size of the dependency app graph is limited to the maximum of 100 plus the parent app (101 total). Lear more -
& users
&3 Groups Name Automatically Install +
£ Tenant administration No results.
X Troubleshooting + support
+Add @
|
i
I
[}

Step 9: Configure Supersedence

Supersedence in Intune apps refers to the ability to replace or upgrade an existing deployed
application with a newer version. It allows you to manage the lifecycle of applications by
automatically detecting and handling updates or upgrades to applications in your environment.

When an application is superseded, it means that a new version of the application is available,
and Intune will handle the process of replacing the older version with the new one on targeted
devices. Supersedence helps ensure that devices stay up to date with the latest versions of
applications, providing improved functionality, security updates, and bug fixes.

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 278

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

‘endpoint.microsoft.com

Microsoft Intune admin center

Home > Apps | All apps >

&
Al Add App X -
E4] pashboard Windows app (Win32)
¥
i= All services ¥
[} Devices @ rppinformation @ Program @ Requirements @ Detectionrules @ Dependencies @ Supersedence >
Apps When you supersede an application, you can specify which apps will be directly updated or replaced. To update an app, disable &
@ Endpoint secur the uninstall previous version option. T replace an app, enable the uninstall previous version option. There is a maximum of 10
o Y Updated or replaced apps, including references to other apps outside of this view, forming a graph of apps. The total size of the =
5 supersedence app graph is limited to the maximum of 10 plus the parent app (11 total). Learn more 4
Reports
-
& users . .
Apps that this app will supersede
& Groups +
% Tenant administration Name Publisher Version Uninstall previous version
K Troubleshooting + support No restlts.
+Add @
[mi]
e]

Step 10: Assign the App to Groups

e Click on "Assignments" to assign the app to specific user groups or device groups and
select the appropriate groups based on your deployment requirements.

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 279

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

soft Intune ads -+

‘endpoint.microsoft.com

“ Home > Apps | All apps >

H
Al Add App - .
4l pashboard Windows app (Win32)
Al services E
[} Devices @ rppinformation @ Program @ Requirements @ Detectionrules @ Dependencies @ Supersedence @ Assignments >
Apps &
@ Endpoint security @ Any Win32 app deployed using Intune will not be automatically removed from the device when the device is retired. The app and the data it contains will remain on the device. If the app s not removed prior to retiring the device, the
end user will need to take explicit action on the device to remove the app. B
Reports
° o -
& users Required O
& Groups +
Group mode Group Filter mode Filter End user notifications Availability Installation deadline Restart grace perioc
£ Tenant administration
No assignments.
Troubleshooting + support = 5
+ Add group @ + Add all users © + Add all devices @
Available for enrolled devices ©
Group mode Group Filter mode Filter End user notifications Availability Restart grace period Delivery optimizatio...
@ Induded AutoPilot Test None None Show all toast As s00n as possible Disabled Content download in
= notifications forearound
+ Add group @ + Add all users © + Add all devices @
Uninstall O
Group mode Group Filter mode Filter End user notifications Availability Installation deadline Restart grace perioc
No assignments.
| . 3
+ Add group @ + Add all users © + Add all devices @
a
e]

Step 8: Review and Deploy the App

Review the app settings and ensure everything is configured correctly. If everything is correct
click on Create.

E Advanced Techniques in MSI Packaging

Powered by Advancedinstaller.com 280

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

O\ AddApp- Microsoft ntuneadm X+

‘endpoint.microsoft.com

Microsoft Intune admin center

€ Home > Apps | All apps > €
H
Al Add App - X =
Ed) Dashboard Windows app (Win32)
¥
= All services N 2
3 pevices @ rppinformation @ Program @ Requirements @ Detectionrules @ Dependencies @ Supersedence @ Assignments @) Review + create >
&2 Apps Summary oY
@, Endpoint security
App information B
Reports
App package file Deploy-Application.ntunewin -
& users
Nai VLC Media Pl
28 croups me edia Player "
Description Deploy-Application st
£ Tenant administration
X Troubleshooting + support
Publisher VideoLAN
App Version 3048
Category
Show this as a featured app in the No

Company Portal

Information URL

Privacy URL

Developer

Owner

Notes

Logo

Program

Install command Deploy-Application.exe Install
Uninstall command Deploy-Application.exe Uninstall
Install behavior System

Device restart behavior App install may force a device restart

Retum codes 0 Success

a

As you can see, the Win32 deployments are more lengthy and require more steps, but if you look
closely it gives you a more granular view and control of your application deployment, hence why
this method has been widely adopted by the IT Professionals.

E Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 281

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

Final Words

This book has provided a comprehensive exploration of various topics related to software
installation and deployment. We have covered a wide range of concepts, tools, and techniques
that are essential for any software developer, system administrator, or IT professional involved
in the deployment process.

Throughout the book, we have discussed the importance of proper software packaging, the role
of MSI technology, and the benefits of using advanced installation tools like Advanced Installer.
We have explored best practices for creating MSI packages, customizing installations, handling
upgrades and patches, and managing dependencies. We have also delved into advanced topics
such as repackaging, Windows Installer customization, scripting, and automation. By
understanding these advanced techniques, readers will be equipped with the knowledge and
skills needed to streamline their software deployment processes, reduce errors, and improve
overall efficiency.

Moreover, we have covered the use of SCCM for deploying MSI packages in enterprise
environments, ensuring centralized management and control over software installations. The
integration of SCCM with MSI technology provides a robust solution for large-scale software
deployment and maintenance.

As we conclude this book, it is important to remember that the software deployment landscape
is constantly evolving. New technologies, methodologies, and best practices emerge regularly,
and it is crucial to stay updated with the latest advancements in the field. Continual learning and
adaptation are key to ensuring smooth and successful software deployments in an
ever-changing IT landscape.

We hope that this book has served as a valuable resource, providing practical insights and
guidance to help you navigate the complex world of software installation and deployment.

Remember, successful software deployment is not just about the technical aspects; it is also
about understanding the end-users, their needs, and delivering a seamless experience. With the
right tools, knowledge, and mindset, you can make software deployment a smooth and
rewarding process for both the developers and end-users.

Thank you for joining us on this journey, and we wish you all the best in your future software
deployment endeavors!

Happy deploying!

Advanced Techniques in MSI Packaging
Powered by Advancedinstaller.com 282

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

About the Author

Dive deep into the world of Microsoft Installer (MSI) with industry expert Alex Marin. This
comprehensive guide unveils advanced techniques and best practices to streamline your
application deployment processes. From intricate dependency management to automation
strategies, “Advanced Techniques in MSI Packaging” empowers IT professionals to elevate

their packaging skills to the next level.

Alex Marin brings over two decades of hands-on experience in IT engineering and
management, specializing in application packaging and repackaging. His work has set
industry standards for efficiency and reliability in software

deployment, making him a trusted voice in the community.

Through this book, Alex shares his vast knowledge,
practical insights, and innovative approaches to

mastering MSI packaging.

Alex Marin

IT Pro | Packaging Lead | Author

Follow Alex on
@ YouTube - H Advanced Installer Blog

https://www.youtube.com/watch?v=woE3JkX0aU8&list=PLhybAX-2L54xgRp1Vn9UgedRsvJCzQveM
https://www.advancedinstaller.com/authors/alex-marin.html

	Binder2.pdf
	Binder1.pdf
	[gtp]MSI_In-Depth_Cover

	MSI Packaging In-Depth.pdf

	Binder3.pdf
	aboutAuthor

